• Title/Summary/Keyword: stress resistance

Search Result 2,305, Processing Time 0.034 seconds

A Stress-Tolerant and High-Yielding Tall Fescue New Variety, 'Greenmaster' (내재해 다수성 톨 페스큐 신품종 "그린마스터"의 품종 특성)

  • Choi, Gi-Jun;Lim, Young-Chul;Ji, Hee-Chung;Kim, Ki-Yong;Park, Hyung-Soo;Seo, Sung;Moon, Chung-Sup;Kim, Dae-Ho;Lee, Sang-Hoon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.30 no.3
    • /
    • pp.199-204
    • /
    • 2010
  • A new tall fescue variety (Festuca arundinacea Schreb.) named "Greenmaster" was developed by the National Institute of Animal Science, RDA, at Suwon from 1999 to 2007. For synthetic seed production of this new variety, 5 superior clones, EFa9111, EFa9122, EFa9211, EFa9225, and EFa9234 were selected and polycrossed. The agronomic growth characteristics and forage production capability of the seeds were studied at Suwon from 2003 to 2004, and regional trials were conducted in Suwon, Pyungchang, Jeju, and Ikcsan from 2005 to 2007. Greenmaster showed enhanced winter hardiness, disease resistance, and regrowth ability as compared to Fawn. The dry matter yield of Greenmaster was 11% higher as 19,156 kg/ha than that of Fawn. However, the nutritive value of both varieties was similar.

The Survey of Actual Using Conditions of Farm-Made Liquid Fertilizers for Cultivating Environment-friendly Agricultural Products (친환경 농산물 재배를 위한 농가 자가제조 액비 사용실태)

  • An, Nan-Hee;Jo, Young-Sang;Jo, Jeong-Rae;Kim, Yong-Ki;Lee, Yeon;Jee, Hyeong-Jin;Lee, Sang-Min;Park, Kwang-Lai;Lee, Byung-Mo
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.3
    • /
    • pp.345-356
    • /
    • 2012
  • We conducted a survey of actual using conditions of farm-made liquid fertilizers by investigating their formulation types, materials, making processes, using methods and various beneficial effects on 29 farms certified by National Agricultural Products Quality Management Service to produce environment-friendly agricultural products in 2009. Most of the materials used to make liquid fertilizers are those that can be easily obtained around the farms. Molasses or black sugar are added as an energy source of microorganism. And leaf mold, bacterial cultures supplied by agricultural extension centers of local governments, and cultures of native microorganisms were used as microbial sources for fermenting effective microorganisms. Types of the farm-made liquid fertilizers were fermented liquid fertilizers, fermented plant juices, amino acid liquid fertilizers, calcium-liquid fertilizers, and phosphoric acid liquid fertilizers. Effects of liquid fertilizers used by the farms were found to promote plant growth by supplying nutrition, to accelerate blooming and flower bud formation, to enhance the quality of agricultural products such as increase of sugar contents and improvement of storing conditions, to induce resistance against diseases and insect pests, and to cause endurance to high temperature stress. Chemical properties of the liquid fertilizers collected were analyzed. As a result, pH and EC range showed differences according to kinds of the liquid fertilizers. Amount of macro-nutrients, such as nitrogen and phosphoric acid, in most of the collected liquid fertilizers, was found to be low. Even though the liquid fertilizers were made from same materials, their contents was found to be different depending on the making process.

Grain Boundary Character Changes and IGA/PWSCC Behavior of Alloy 600 Material by Thermomechanical Treatment (가공열처리에 의한 Alloy 600 재료의 결정립계특성 변화와 입계부식 및 1차측 응력부식균열 거동)

  • Kim, J.;Han, J.H.;Lee, D.H.;Kim, Y.S.;Roh, H.S.;Kim, G.H.;Kim, J.S.
    • Korean Journal of Materials Research
    • /
    • v.9 no.9
    • /
    • pp.919-925
    • /
    • 1999
  • Grain boundary characteristics and corrosion behavior of Alloy 600 material were investigated using the concept of grain boundary control by thermomechanical treatment(TMT). The grain boundary character distribution (GBCD) was analyzed by electron backscattered diffraction pattern. The effects of GBeD variation on intergranular at tack(JGA) and primary water stress corrosion cracking(PWSeC) were also evaluated. Changes in the fraction of coinci dence site lattice(CSL) boundaries in each cycle of TMT process were not distinguishable, but the total eSL boundary frequencies for TMT specimens increased about 10% compared with those of the commercial Alloy 600 material. It was found from IGA tests that the resistance to IGA was improved by TMT process. However, it was found from PWSCC test that repeating of TMT cycles resulted in the gradual decrease of the time to failure and the maximum load due to change in grain boundary characteristics, while the average crack propagation rate of primary crack increased mainly due to suppression of secondary crack propagation. It is considered that these corrosion characteristics in TMT specimens is attributed to 'fine tuning of grain boundary' mechanism.

  • PDF

Analysis of an acid-responsive element in a promoter of laccase gene in the inky cap, Coprinellus congregatus (Coprinellus congregatus의 laccase 유전자 프로모터의 산성반응인자 분석)

  • Kim, Su Yeon;Nguyen, Linh;Choi, Hyoung T.
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.249-253
    • /
    • 2016
  • The inky cap, Coprinellus congregatus, produces several laccase isozymes during its life cycle: both hyphal tip laccase and sclerotial laccase are involved in the fungal development. When this fungus was transferred to an acid liquid medium (pH 4.0-4.5), a new laccase was synthesized and secreted into the culture supernatant. In order to examine its regulation by external pH, green fluorescent protein gene was ligated at the downstream of the promoters having different lengths. These expression vectors having different promoter lengths were inserted into the fungal transformation vector, pBARGEM7-1. These expression vectors were introduced to the mating type a1 and a2 monokaryons, and the transformants were selected by the phosphinothricin resistance. Transformant a1 (a1TF) and transformant a2 (a2TF) were mated with each other to generate homozygotic dikaryon transformants. All these transformants were grown in neutral liquid medium for 5 days, and then the whole cell homogenates were transferred to the acidic liquid medium (pH 4.1). After 36 h incubation at $25^{\circ}C$, cells were harvested for the analysis of GFP expression. GFP expression was detected in the transformant having full-length promoter (2.0 kb), but other transformants having shorter length promoter (shorter than 1.29 kb) failed to show the fluorescence. Therefore, the acid-responsive element in the laccase promoter should be localized between -2.0 kb ~ -1.29 kb region.

Studies on the Chilling Injury of Rice Seedlings II. Maximum Tolerance of the Recent Varieties from Indica ${\times}$ Japonica Cross to Chilling Stress at the 3rd Leaf-stage (수도의 유묘기 냉해에 관한 연구 II. 주요 신품종들의 제 3 엽기 내냉한계)

  • Kwon, Y.W.;Kim, J.H.;Oh, Y.J.;Lee, M.H.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.24 no.2
    • /
    • pp.17-26
    • /
    • 1979
  • Comparative tolerance of the new rice varieties from Indicax Japonica cross to elastic and plastic chilling injuries was examined at the 3rd leaf-stage, the most sensitive stage to chilling during nursery, using a chilling chamber set 11\circ C, 13hrs. 20K lux day/5$^{\circ}C$ night. Seedlings were reared until 35 days after seeding in a 26\circ C, 13hrs. day / 18\circ C night chamber except the period of chilling treatment for 0, 3, 4, 6, 8 or 10 days. The new varieties were approximately twice susceptible to elastic injuries, and thrice susceptible to plastic injuries than the Japonica varieties in the term of chilling duration. Among the variables indicating apparant chilling injuries the reduction in dry matter responded most sensitively and differentiated well the varietal difference in chilling resistance even with shorter chilling period. Sequential aspects of the cause and effect relations involved in the development of the apparant chilling injuries are discussed and a schematic diagram is presented as Fig. 5 in the text.

  • PDF

A Study on the Cobalt Electrodeposition of High Aspect Ratio Through-Silicon-Via (TSV) with Single Additive (단일 첨가제를 이용한 고종횡비 TSV의 코발트 전해증착에 관한 연구)

  • Kim, Yu-Jeong;Lee, Jin-Hyeon;Park, Gi-Mun;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.140-140
    • /
    • 2018
  • The 3D interconnect technologies have been appeared, as the density of Integrated Circuit (IC) devices increases. Through Silicon Via (TSV) process is an important technology in the 3D interconnect technologies. And the process is used to form a vertically electrical connection through silicon dies. This TSV process has some advantages that short length of interconnection, high interconnection density, low electrical resistance, and low power consumption. Because of these advantages, TSVs could improve the device performance higher. The fabrication process of TSV has several steps such as TSV etching, insulator deposition, seed layer deposition, metallization, planarization, and assembly. Among them, TSV metallization (i.e. TSV filling) was core process in the fabrication process of TSV because TSV metallization determines the performance and reliability of the TSV interconnect. TSVs were commonly filled with metals by using the simple electrochemical deposition method. However, since the aspect ratio of TSVs was become a higher, it was easy to occur voids and copper filling of TSVs became more difficult. Using some additives like an accelerator, suppressor and leveler for the void-free filling of TSVs, deposition rate of bottom could be fast whereas deposition of side walls could be inhibited. The suppressor was adsorbed surface of via easily because of its higher molecular weight than the accelerator. However, for high aspect ratio TSV fillers, the growth of the top of via can be accelerated because the suppressor is replaced by an accelerator. The substitution of the accelerator and the suppressor caused the side wall growth and defect generation. The suppressor was used as Single additive electrodeposition of TSV to overcome the constraints. At the electrochemical deposition of high aspect ratio of TSVs, the suppressor as single additive could effectively suppress the growth of the top surface and the void-free bottom-up filling became possible. Generally, copper was used to fill TSVs since its low resistivity could reduce the RC delay of the interconnection. However, because of the large Coefficients of Thermal Expansion (CTE) mismatch between silicon and copper, stress was induced to the silicon around the TSVs at the annealing process. The Keep Out Zone (KOZ), the stressed area in the silicon, could affect carrier mobility and could cause degradation of the device performance. Cobalt can be used as an alternative material because the CTE of cobalt was lower than that of copper. Therefore, using cobalt could reduce KOZ and improve device performance. In this study, high-aspect ratio TSVs were filled with cobalt using the electrochemical deposition. And the filling performance was enhanced by using the suppressor as single additive. Electrochemical analysis explains the effect of suppressor in the cobalt filling bath and the effect of filling behavior at condition such as current type was investigated.

  • PDF

The Strain of Transverse Steel and Concrete Shear Resistance Degradation after Yielding of Reinforced Concrete Circular Pier (철근콘크리트 원형 교각의 횡방향철근 변형률과 항복이후 콘크리트 전단저항 저감)

  • Ko, Seong Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.147-157
    • /
    • 2018
  • The basis of capacity design has been explicitly or implicitly regulated in most bridge design specifications. It is to guarantee ductile failure of entire bridge system by preventing brittle failure of pier members and any other structural members until the columns provides fully enough plastic rotation capacity. Brittle shear is regarded as a mode of failure that should be avoided in reinforced concrete bridge pier design. To provide ductility behavior of column, the one of important factors is that flexural hinge of column must be detailed to ensure adequate and dependable shear strength and deformation capacity. Eight small scale circular reinforced concrete columns were tested under cyclic lateral load with 4.5 aspect ratio. The test variables are longitudinal steel ratio, transverse steel ratio, and axial load ratio. Eight flexurally dominated columns were tested. In all specimens, initial flexural-shear cracks occurred at 1.5% drift ratio. The multiple flexural-shear crack width and length gradually increased until the final stage. The angles of the major inclined cracks measured from the vertical column axis ranged between 42 and 48 degrees. In particular, this study focused on assessing transverse reinforcement contribution to the column shear strength. Transverse reinforcement contribution measured during test. Each three components of transverse reinforcement contribution, axial force contribution and concrete contribution were investigated and compared. It was assessed that the concrete stresses of all specimen were larger than stress limit of Korea Bridge Design Specifications.

A Study on the Evaluation of Member Buckling Performance of Space Frame Structures (스페이스 프레임 구조물의 부재좌굴성능 평가방안 연구)

  • Kang, Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.176-182
    • /
    • 2018
  • The purpose of this study was to investigate the safety and rationality of buckling strength and length coefficient by comparing with the design standards of domestic and foreign compression materials based on the buckling test results of circular steel pipe with ball joints. The types of round steel pipes selected for buckling performance evaluation were ø$48.6{\times}2.8t$, ø$60.5{\times}3.2t$ and ø$76.3{\times}3.2t$. For the design of domestic and foreign compression materials, Korea 's Load Resistance and Factor Design, Japan' s Limit State Design, and British Standard BS5950 standard were applied. In this study, we compared and analyzed the buckling performance between the experimental results of the previous research and the domestic and foreign design standards. The results were summarized as follows. As a result of applying the full length of the member to the buckling length in the compression materials design standards of each country, it was 64-89% of the buckling strength by the experiment. Therefore, it is deemed desirable to perform the member design according to the current design standard formula for safety. Experimental results show that the measured buckling strength was 1.02-1.43 times higher than the buckling strength of pure cylindrical steel tubes in the design standards of Korea, Japan and the United Kingdom compression materials. Consequently, it seemed that the buckling strength of individual member in the design of space frame structure should be considered buckling coefficient as the length of pure round steel pipe rather than the length of inter-node.

An Investigation on the Ultimate Strength of Duplex Stainless Steel (STS329FLD) Bolted Connections with Two Bolts (2행 1열 듀플렉스계 스테인리스강(STS329FLD) 볼트접합부의 최대내력 조사)

  • An, Sung-Ho;Kim, Geun-Young;Hwang, Bo-Kyung;Kim, Tae-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.55-63
    • /
    • 2018
  • Recently, the use of duplex stainless steel which with a two-phase microstructure (equal mixture of ferrite and austenite) has been increased in a variety of industrial fields due to higher strength leading to weight saving, greater corrosion resistance(particularly, stress corrosion cracking) and lower price. However, currently, stainless steels are not included in the structural materials of Korean Building Code and corresponding design standards are not specified. In this paper, experimental studies have been performed to investigate the structural behaviors of duplex stainless steel (STS329FLD) bolted connection with two bolts for providing the design data. Main variables are shear connection type (single shear and double shear) and end distance parallel to the direction of applied force. Fracture modes at the final step of test were classified into typical block shear fracture, tensile fracture and curling. Curling occurrence in single shear connection led to ultimate strength drop by up to 20%. Test strengths were compared with those by current design specifications such as AISC/AISI/KBC, EC3 and AIJ and proposed equations by existing studies. For specimens with no curling, Clement & Teh's equation considering the active shear plane provided a higher strength estimation accurancy and for specimens with curling, Kim & Lim's equation considering strength reduction by curling was also overly unconservative to predict the ultimate strength of curled connections.

Numerical analysis for deformation characteristics under the freezing and bursting of Al pipe (알루미늄 관의 동파 거동특성에 관한 수치적 연구)

  • Choi, Seung-Hyun;Lee, Dong-Won;Ko, Young-Bae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4763-4768
    • /
    • 2014
  • Recently, aluminum pipes have been used instead of steel pipes for open and shut machines in vinyl housing because of its corrosion-resistance and light weight. In particular, the light weight is very useful for fitting and removal by human resources. On the other hand, an aluminum pipe is weak in winter because aluminum has a larger thermal expansion coefficient than steel. This study examined the freezing and bursting of aluminum pipes by numerical analysis. The mechanical-thermal deformation characteristics were analyzed under the condition of ice volumetric expansion in aluminum pipes reaching 50%. From numerical analysis, large stresses above the yield stress occurred in aluminum pipe after ice expanded in the net diameter immediately. In addition, the freezing and bursting of aluminum pipes was predicted around an ice volumetric expansion of 6 - 7% because the thickness of the aluminum pipe reached an aluminum elongation ratio of 17%. Therefore, it is recommended that aluminum pipes be sealed perfectly to prevent water flow in the pipe. These results suggest that it is very difficult to prevent freezing and bursting of aluminum pipes by water freezing in the pipe.