• Title/Summary/Keyword: stress parameters

Search Result 3,192, Processing Time 0.029 seconds

Characteristics of Barkhausen Noise Properties and Hysteresis Loop on Tensile Stressed Rolled Steels

  • Kikuchi, Hiroaki;Ara, Katsuyuki;Kamada, Yasuhiro;Kobayashi, Satoru
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.427-430
    • /
    • 2011
  • The rolled steels for welded structure applied tensile stress have been examined by means of magnetic Barkhausen noise (MBN) method and of a physical parameter obtained from a hysteresis loop. The behaviors of MBN parameters and coercive force with tensile stress were discussed in relation to microstructure changes. There is no change in MBN parameters and coercive force below yield strength. The coercive force rises rapidly with tensile stress above yield strength. On the other hand, the rms voltage and the peak in averaged rms voltage take a maximum around yield strength and then decreases. The magnetomotive force at peak in the averaged rms voltage shows a minimum around yield strength. These phenomena are attributed to the combined effects of cell texture and dislocation density. In addition, the behaviors of MBN parameters around yield strength may be reflected by the localized changes in strain field due to the formation of dislocation tangles.

Exposure to Triclosan Induces Mortality through Oxidative Stress and DNA Damage in the Java Medaka Oryzias javanicus

  • Seong Duk Do;Jae-Sung Rhee
    • Journal of Marine Life Science
    • /
    • v.9 no.1
    • /
    • pp.33-40
    • /
    • 2024
  • To understand the detrimental effects of triclosan on Java medaka (Oryzias javanicus) embryos, fertilized embryos were exposed to different concentrations (1, 10, 50, 100, 200, 400, 600, 800, and 1,000 ㎍ l-1) of triclosan until hatching. Then, we examined the survival rate and developmental parameters as well as alterations in antioxidant constituents and DNA damage markers. The results showed dose-dependent mortality, hatching delays, and developmental abnormalities in the embryos. Additionally, there were significant increases in oxidative stress parameters and antioxidant responses, along with elevated DNA damage. These findings suggest that sublethal concentrations of triclosan induce toxic effects through oxidative stress on Java medaka embryos, as evidenced by changes in in vivo parameters and biochemical constituents.

Evaluation of Models for Estimating Shrinkage Stress in Patch Repair System

  • Kristiawan, Stefanus A.
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.4
    • /
    • pp.221-230
    • /
    • 2012
  • Cracking of repair material due to restraint of shrinkage could hinder the intended extension of serviceability of repaired concrete structure. The availability of model to predict shrinkage stress under restraint condition will be useful to assess whether repair material with particular deformation properties is resistance to cracking or not. The accuracy in the prediction will depend upon reliability of the model, input parameters, testing methods used to characterize the input parameters, etc. This paper reviews a variety of models to predict shrinkage stress in patch repair system. Effect of creep and composite action to release shrinkage stress in the patch repair system are quantified and discussed. Accuracy of the models is examined by comparing predicted and measured shrinkage stress. Simplified model to estimate shrinkage stress is proposed which requires only shrinkage property of repair material as an input parameter.

Soil Stress Analysis Using Discrete Element Method for Plate-Sinkage Tests (DEM 모델을 이용한 평판재하시험의 토양 수직응력 해석)

  • Jang, Gichan;Lee, Soojin;Lee, Kyu-Jin
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.3
    • /
    • pp.230-237
    • /
    • 2015
  • Soil deformation on the off-load ground is significantly affected by soil conditions, such as soil type, water content, and etc. Thus, the soil characteristics should be estimated for predicting vehicle movements on the off-load conditions. The plate-sinkage test, a widely-used experimental test for predicting the wheel-soil interaction, provides the soil characteristic parameters from the relationship between soil stress and plate sinkage. In this study, soil stress under the plate-sinkage situation is calculated by the DEM (Discrete Element Method) model. We developed a virtual soil bin with DEM to obtain the vertical reaction forces under the plate pressing the soil surface. Also parametric studies to investigate effects of DEM model parameters, such as, particle density, Young's modulus, dynamic friction, rolling friction, and adhesion, on the characteristic soil parameters were performed.

Numerical Parametric Study of Offshore K-Joint Structure (해양 K-Joint 구조의 수치해석 연구)

  • Park Kwan-Kyu;Im Sung-Woo;Jo Chul-Hee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.603-611
    • /
    • 2006
  • The fundamental joint configuration that is often applied in offshore structures is the K-joint. The paper describes a numerical parametric study for K-joint parameters (using the finite element program) and compared with results of the experimental test. The stress effects of various parameters including $\alpha,\;\beta,\;\gamma,\;\tau\;and\;\theta$ were investigated. The paper introduces the stress distributions as per each parameter. From the study, the maximum stress of joint became different according to the variation of joint parameters.

  • PDF

Effect of Process Parameters on Hydroforming (Hydroforming 공정변수의 영향)

  • 권재욱;명노훈;이경돈
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.615-623
    • /
    • 2000
  • The industrial application of hydroforming has a great potential in saying cost and achieving dimensional accuracy in automotive industry presently. The aim of the following article is to investigate the effect of process parameters on hydroformed part. Firstly, we have to investigate the change of mechanical properties for sheet and pipe material according to various radius/thickness ratio(r/t). The change of mechanical properties affects the yield stress more than the total elongation. Increase of yield stress for pipe has a bad influence on formability of hydroforming. Among the roll-forming process, the sizing process didn't change mechanical properties. The process parameters such as the initial pressure, mandrel shape and friction have seriously influenced on formability of hydroforming. Therefore we need to check formability of given material through the FE analysis in the beginning stage of process design and the predicted hydroforming process parameters ate generally a good starting point for the prototype tryout stage. The results of pretending, hydroforming analysis using FE model are good agreement with experimental results.

  • PDF

Stress Indices of Hollow Circular Cross Section Welded Attachments on Piping Elbows with the Extended Parameters Range (매개변수 적용범위를 확장한 배관 곡관부에 용접 부착된 원형관 이음부의 이차응력지수)

  • Lee, Kun-Suk;Moon, Seong-Jae
    • Plant Journal
    • /
    • v.15 no.4
    • /
    • pp.43-51
    • /
    • 2019
  • The stress concentration of the integral welded attachments (IWA) often used to support piping system has been a big issue because it induces local stresses in piping. The method to evaluate local stresses associated with attachments on elbows has been suggested in EPRI TR-107453. However, there are limitations regarding specific parameters range in order to use correlation equation. In this paper, parametric study based on piping elbow size and attachment dimension was performed utilizing finite element analysis (FEA) to evaluate the secondary stress indices of hollow circular cross section welded attachments on piping elbows with the extended parameters range. The results of the FEA were used to develop correlation formulas for calculating secondary stress indices. The empirical equations in this study are suggested as an alternative evaluation method of EPRI TR-107453 by extending parameters range.

Self Diffusions and Rheological Properties of Polyamide Polymer Materials in Various Solvents (용매 환경에서의 폴리아미드 고분자 재료의 자체확산과 유변학적인 특성)

  • Kim, Nam Jeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1050-1059
    • /
    • 2019
  • The self diffusion, hole volume, and flow thermodynamic parameters of polyamide fibers were calculated from rheological parameters and crystallite size in order to study of flow segments in amorphous region. The stress relaxation of polyamide filament fibers were carried out in air and various solvents at various temperatures using the tensile tester with the solvent chamber. The rheological parameters were obtained by applying the experimental stress relaxation curves to the theoretical equation of the Ree-Eyring and Maxwell non-Newtonian model. It was observed that the rheological parameters of these polyamide filament fibers are directly related to the relaxation spectra, self diffusion, viscosities, and activation energies of flow segments.

On the Springback Analysis of Sheet Metal Forming (판재성형의 탄성복원해석에 대하여)

  • 조진우;정완진
    • Transactions of Materials Processing
    • /
    • v.6 no.5
    • /
    • pp.386-394
    • /
    • 1997
  • The analysis of the springback is done based on the stress of sheet after forming. Therfore, it is important to get the accurate stress from forming analysis. In this study, some parameters that influence on the accuracy of the springback estimation are investigated. Discretization of sheet and tools, choice of penalty constant and damping in contact treatment, and tool speed scaling are chosen as parameters. As a numerical example, the 2D draw bending benchmark problem of the NUMISHEET'93 is used. Also, the springback results of the s-rail benchmark problem of the NUMISHEET'96 are presented.

  • PDF

Maximum concrete stress developed in unconfined flexural RC members

  • Ho, J.C.M.;Pam, H.J.;Peng, J.;Wong, Y.L.
    • Computers and Concrete
    • /
    • v.8 no.2
    • /
    • pp.207-227
    • /
    • 2011
  • In flexural strength design of unconfined reinforced concrete (RC) members, the concrete compressive stress-strain curve is scaled down from the uni-axial stress-strain curve such that the maximum concrete stress adopted in design is less than the uni-axial strength to account for the strain gradient effect. It has been found that the use of this smaller maximum concrete stress will underestimate the flexural strength of unconfined RC members although the safety factors for materials are taken as unity. Herein, in order to investigate the effect of strain gradient on the maximum concrete stress that can be developed in unconfined flexural RC members, several pairs of plain concrete (PC) and RC inverted T-shaped specimens were fabricated and tested under concentric and eccentric loads. From the test results, the maximum concrete stress developed in the eccentric specimens under strain gradient is determined by the modified concrete stress-strain curve obtained from the counterpart concentric specimens based on axial load and moment equilibriums. Based on that, a pair of equivalent rectangular concrete stress block parameters for the purpose of flexural strength design of unconfined RC members is determined.