• Title/Summary/Keyword: stress monitoring application

Search Result 77, Processing Time 0.035 seconds

Human Stress Monitoring through Measurement of Physiological Signals (생체 신호 측정을 통한 스트레스 모니터링)

  • Natsagdorj, Ulziibayar;Moon, Kwang-Seok;Park, Hanhoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • As the human population increases in the world, the ratio of health doctors is rapidly decreasing. Therefore, it is an urgent need to create new technologies to monitor the physical and mental health of people during their daily life. In particular, negative mental states like depression and anxiety are big problems in modern societies. Usually this happens due to stressful situations during everyday activities including work. This paper presents a machine learning approach to reliably estimating the level of human mental stress using wearable physiological sensors. And also, this paper presents an Android- and Arduino-based stress monitoring and relief system.

Stress Analysis of Tunnel Concrete Lining for Maintenance Monitoring (유지관리 계측에 의한 터널 콘크리트 라이닝의 응력 분석)

  • Woo, Jong-Tae;Lee, Song
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.341-348
    • /
    • 2002
  • The purpose of maintenance monitoring is to offer the objective and continuous data in order to be lasting security affirmation and best fitted maintenance of tunnel structure. Though recently the examples of maintenance monitoring which Is applied to tunnel are rapidly increasing, long-term measured monitoring actual results and rationally analysis method researches are wholly lacking. In this study, it is analyzed that the relationship of stress and reinforcement stress of concrete lining, i.e., last support materials of tunnel through regression analysis based on the monitoring result of the subway tunnel, which was accomplished the monitoring for long period, passing the weathering. Also, through the analysis of the stress and the safety of concrete lining, it is estimated that the frequency of maintenance monitoring and the in-situ application of the criteria value of management.

Field application of elasto-magnetic stress sensors for monitoring of cable tension force in cable-stayed bridges

  • Yim, Jinsuk;Wang, Ming L.;Shin, Sung Woo;Yun, Chung-Bang;Jung, Hyung-Jo;Kim, Jeong-Tae;Eem, Seung-Hyun
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.465-482
    • /
    • 2013
  • Recently, a novel stress sensor, which utilizes the elasto-magnetic (EM) effect of ferromagnetic materials, has been developed to measure stress in steel cables and wires. In this study, the effectiveness of this EM based stress sensors for monitoring of the cable tension force of a real scale cable-stayed bridge was investigated. Two EM stress sensors were installed on two selected multi-strand cables in Hwa-Myung Bridge, Busan, South Korea. Conventional lift-off test was conducted to obtain reference cable tension forces of two test cables. The reference forces were used to calibrate and validate cable tension force measurements from the EM sensors. Tension force variations of two test cables during the second tensioning work on Hwa-Myung Bridge were monitored using the EM sensors. Numerical simulations were conducted to compare and verify the monitoring results. Based on the results, the effectiveness of EM sensors for accurate field monitoring of the cable tension force of cable-stayed bridge is discussed.

Estimation Model on Stress of Structures using TLS and FEM (TLS와 FEM을 이용한 구조물의 음력평가 모델 개발)

  • Kang, Deok-Shin;Lee, Hong-Min;Park, Hyo-Seon;Lee, Im-Pyeong
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.49-52
    • /
    • 2007
  • Terrestrial Laser Scanning(TLS) was developed at the mid-to-late 1990s. This technique enables to perform reconnaissance surveying of regions or structures hard to access. Besides, TLS has been extended its application gradually such as preservation of historical remains, underground surveys, slopes, glaciers monitoring and so on. However, though the technique has a lot of advantages, an application for structural health and safety monitoring is a beginning stage and it need much research. Therefore in this study, as a groundwork, the estimation model on stress of structures using TLS and Finite Element Method(FEM) applied by the Digital Elevation Model(DEM) technique of geoinformatics is proposed. For the verification of this model, experiments were performed with a continuous steel beam subjected to point loads and outputs were compared with those of electrical strain sensors.

  • PDF

Study on Stress Transfer Property for Embedded FBG Strain Sensors in Concrete Monitoring

  • Jang, Il-Young;Yun, Ying-Wei
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.1
    • /
    • pp.33-37
    • /
    • 2009
  • Fiber Bragg grating (FBG) sensors already have been the focus for structural health monitoring (SHM) due to their distinguishing advantages. However, as bare optical fiber is very fragile, bare FBG strain sensor without encapsulation can not properly be applied in practical infrastructures. Therefore encapsulation techniques for making encapsulated FBG strain sensor show very important in pushing forward the application of FBG strain sensors in SHM. In this paper, a simplified approximate method to analyze the stress transferring rules for embedded FBG strain sensors in concrete monitoring is put forward according to mechanics of composite materials. Shear lag theory is applied to analyze the stress transferring rule of embedded FBG strain sensor in measured host material at the first time. The measured host objects (concrete) and the encapsulated FBG strain sensor are regarded as a composite, and then the stress transfer formula and stress transfer coefficient of encapsulated FBG strain sensor are obtained.

Application of Nonlinear Ultrasonic Method for Monitoring of Stress State in Concrete

  • Kim, Gyu Jin;Park, Sun Jong;Kwak, Hyo Gyoung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.2
    • /
    • pp.121-129
    • /
    • 2016
  • As the lifespan of concrete structures increases, their load carrying capacity decreases owing to cyclic loads and long-term effects such as creep and shrinkage. For these reasons, there is a necessity for stress state monitoring of concrete members. Particularly, it is necessary to evaluate the concrete structures for behavioral changes by using a technique that can overcome the measuring limitations of usual ultrasonic nondestructive evaluation methods. This paper proposes the use of a nonlinear ultrasonic method, namely, nonlinear resonant ultrasonic spectroscopy (NRUS) for the measurement of nonlinearity parameters for stress monitoring. An experiment compared the use of NRUS method and a linear ultrasonic method, namely, ultrasonic pulse velocity (UPV) to study the effects of continuously increasing loads and cyclic loads on the nonlinearity parameter. Both NRUS and UPV methods found a similar direct relationship between load level and that parameter. The NRUS method showed a higher sensitivity to micro-structural changes of concrete than UPV method. Thus, the experiment confirms the possibility of using the nonlinear ultrasonic method for stress state monitoring of concrete members.

A Study on Axial Stress Measurement and analysis of High-rise Building Structure Health Monitoring (초고층 구조물 건전성 모니터링을 위한 축응력 계측 및 해석에 관한 연구)

  • Lee, Jong-Ho;Kim, Seon-Gyu;Chun, Young-Jun;Lee, Seung-Min;Im, Jong-Soon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.91-92
    • /
    • 2015
  • This study was performed for application of Structural Health Monitoring system of Jamsil Lotte World Tower. Axial stresses of mega column and core wall are measured in the past 29 months for axial stress monitoring and evaluating predicted self weight. We use the midas gen program(FEM analysis program) with construction stage analysis mode to predict axial stress. 8 mega column axial stressmeters are installed at 21st floor and 4 core wall stressmeters are installed at 38th floor. Measurement data was obtained without creep and shrinkage effect.

  • PDF

Application of magnetoelastic stress sensors in large steel cables

  • Wang, Guodun;Wang, Ming L.;Zhao, Yang;Chen, Yong;Sun, Bingnan
    • Smart Structures and Systems
    • /
    • v.2 no.2
    • /
    • pp.155-169
    • /
    • 2006
  • In this paper, the application of magnetoelasticity in static tension monitoring for large steel cables is discussed. Magnetoelastic (EM) stress sensors make contact-free tension monitoring possible for hanger cables and post-tensioned cables on suspension and cable-stayed bridges. By quantifying the correlation of magnetic relative permeability with tension and temperature, the EM sensors inspect the load levels in the steel cables. Cable tension monitoring on Qiangjiang (QJ) 4th Bridge demonstrates the reliability of the EM sensors.

Application of the Electrochemical Noise Method with Three Electrodes to Monitor Corrosion and Environmental Cracking in Chemical Plants

  • Ohtsu, Takao;Miyazawa, Masazumi;Ebara, Ryuicluro
    • Corrosion Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.173-178
    • /
    • 2008
  • Recently an electrochemical noise method (ENM) with three electrodes has gained attention as a corrosion monitoring system in chemical plants. So far a few studies have been carried out for localized corrosion and environmental cracking of chemical plant materials. In this paper the ENM system is briefly summarized. Then an application of ENM to general corrosion for chemical plant materials is described. The emphasis is focused upon the analysis of stress on the corrosion cracking process of austenitic stainless steel in 30% $MgCl_2$ aqueous solution and the corrosion fatigue crack initiation process of 12 Cr stainless steel in 3% NaCl aqueous solution by ENM. Finally future problems for ENM to monitor regarding corrosion and environmental cracking in chemical plants are discussed.

An Improved Method for Monitoring of Soil Moisture Using NOAA-AVHRR Data

  • Fu, June;Pang, Zhiguo;Xiao, Qianguang
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.195-197
    • /
    • 2003
  • Soil moisture is a crucial variable in research works of hydrology, meteorology and plant sciences. Adequate soil moisture is essential for plant growth; excesses and deficits of soil moisture must be considered in agricultural practices. There are already several remote sensing methods used for monitoring soil moisture, such as thermal inertia, vegetation water-supplying index, crop water stress index and multi-factor regression. In this paper, an improved method has been discussed which is based on the thermal inertia. We analyzed the problems of monitoring soil moisture using satellites at first, and then put forward an simplified method which directly uses land surface temperature differences to measure soil moisture. Also we have taken the influence of vegetation into account, and import NDVI into the model. The method was used in the study of soil moisture in Heilongjiang Province, China, and we draw the conclusion by the experiments that the model can evidently increase the precision of monitoring soil moisture.

  • PDF