• Title/Summary/Keyword: stress fibers

Search Result 353, Processing Time 0.024 seconds

EFFECT OF CARBON FIBER SURFACE PROPERTIES ON FIBER-MATRIX ADHESION OF THE COMPOSITES

  • Kim Mun-Han;Park Su-Jin;Lee Jae-Rak;Choe Seon-Ung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.40-43
    • /
    • 1999
  • Electrochemical surface treatment of PAN-based carbon fibers in acidic electrolyte has been studied in increasing the surface functional groups on fiber surfaces for the improvement of fiber-matrix adhesion of the resulting composites. According to the FT-IR and XPS measurements, it reveals that the oxygen functional groups on fibers are largely influence on the composite mechanical behaviors, whereas the nitrogen functional groups are not affected in the system. In this work, a good correlation between surface functionality and mechanical properties is established.

  • PDF

Shear strength of steel fiber reinforced concrete beams with stirrups

  • Campione, G.;La Mendola, L.;Papia, M.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.107-136
    • /
    • 2006
  • The present paper proposes a semi-empirical analytical expression that is capable of determining the shear strength of reinforced concrete beams with longitudinal bars, in the presence of reinforcing fibers and transverse stirrups. The expression is based on an evaluation of the strength contribution of beam and arch actions and it makes it possible to take their interaction with the fibers into account. For the strength contribution of stirrups, the effective stress reached at beam failure was considered by introducing an effectiveness function. This function shows the share of beam action strength contribution on the global strength of the beam calculated including the effect of fibers. The expression is calibrated on the basis of experimental data available in literature referring to fibrous reinforced concrete beams with steel fibers and recently obtained by the authors. It can also include the following variables in the strength previsions: - geometrical ratio of longitudinal bars in tension; - shear span to depth ratio; - strength of materials and fiber characteristics; - size effects. Finally, some of the more recent analytical expressions that are capable of predicting the shear strength of fibrous concrete beams, also in the presence of stirrups, are mentioned and a comparison is made with experimental data and with the results obtained by the authors.

An Experimental Study on the Engineering Properties of HPFRCC According to Kinds, Shapes and Volume Fraction of Fibers (섬유의 종류, 형상 및 치환율에 따른 HPFRCC의 공학적 특성에 관한 실험적 연구)

  • Kim, Young-Duck;Cho, Bong-Suk;Kim, Jae-Hwan;Kim, Gyu-Yong;Choi, Kyung-Yuel;Kim, Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.59-62
    • /
    • 2003
  • Kinds, shapes and fraction ratios of fibers have influence on properties of HPFRCC(High-Performance Fiver Reinforced Cementitious Concrete) like bending strength, strain capacity and fracture toughness. For example, hydrophilic fibers have different chemical bond strength from hydrophobic fibers, fiber shapes influence on fiber pull-out and rupture, and fiber volume fraction influence on bending strength. In this study, to estimate influences of kinds, shapes and fraction ratios of fibers, we make HFRCC with 3 kind of fiber in various volume fraction of fiber and compare cracking, bending strength and fracture toughness. As the results, bending strength of HPFRCC was increased as fiber volume fraction was increase and fiber tensile strength was increase, and strain capacity and fracture toughness of HFRCC was higher in fiber pull-out fracture than in fiber rupture fracture. And HFRCC showing pseudo strain hardening has higher fiber reinforce efficiency than others.

  • PDF

A Theoretical and Experimental Investigation on the Flexural Behavior of Reinforced Concrete Members Containing Steel Fibers (강섬유를 혼입한 철근콘크리트부재의 휨거동에 관한 이론 및 실험연구)

  • 오병한
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.3
    • /
    • pp.129-139
    • /
    • 1991
  • The mechanical hehavior of relIlforced concrete beams with steel fibers is investigated 111 the present study. An expenmental program was set up and several series of rem forced concrete beams have been tested, including two senes of singly-reinforced concrete beams and one senes of doubly-reinforced concrete beams. It was found from th, :se measurements that the crack widths lIlcrease almost llIlearly With the lIlcrease of steel stress and that the crack Widths at the same loadlJ1g stages are greatly reduced as the contents of steel fibers increase. The present study also IJ1chcates that the ductiiIty and the ultJmate resistance are remarkably enhanced due to the addition of steel fibers. A theoretical mex1e1 for the flexural analysis of fiber-reinforced concrete beam which takes into account the effects of fibers JS also proposed.

Compressive and tensile strength behaviors of sand reinforced with fibers and natural Para rubber

  • Sommart Swasdi;Arsit Iyaruk;Panu Promputtangkoon;Arun, Lukjan
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.361-373
    • /
    • 2023
  • This study aimed to investigate the engineering properties and mechanical behaviors of polymer-fibers treated sand. Para rubber (PR), natural fiber (NF), and geosynthetic fiber (GF) were used to reinforce poorly graded sand. A series of unconfined compressive and splitting tensile strength tests were performed to analyze the engineering behaviors and strength enhancement mechanism. The experiment results indicated that the PR-fibers mixture could firmly enhance the strength properties of sand. The stress-strain characteristics and failure patterns have been changed due to the increase of PR and fibers content. The presence of PR and fibers strengthened the sand and enhanced the stiffness and ductility behavior of the mixture. The stiffness of reinforced sand reaches an optimum state when both NF and GF are 0.5%, while the optimum PR contents are 20% and 22.5% for the mixture with NF and GF, respectively. An addition of PR and fiber into sand contributed to increasing interlocking zone and bonding of PR-sand interfacial.

A Review of Journals on the Aging Skeletal Muscle (골격근의 노화에 대한 고찰)

  • Kwon, Oh-Bong;Song, Yun-Kyung;Lim, Hyung-Ho
    • The Journal of Korea CHUNA Manual Medicine
    • /
    • v.4 no.1
    • /
    • pp.55-65
    • /
    • 2003
  • The purpose of this article was to contribute to the knowledge of physiological and pathological changes of aging skeletal muscles, and of therapic method. By aging there were changes of distribution of muscle fibers, the loss of muscle mass, the loss of the number of muscle fibers, the loss of glycolysis capacity, the decrease of the oxidative enzymes and muscle vascularization in the skeletal muscles. And as a pathological change, the exhaustive maximal exercise increased oxidative stress that led to oxidative damage which were shown to be implicated in promoting aging. The property of intensity and duration exercise is important not only in keeping human health and physical fitness from oxidative stress, but also for the maintenance of well-being and quality of life.

  • PDF

Electromechanical Relation of metallic heat wires and Strain Estimation of Structural Tendons (금속계열선의 전기기계적 상관작용과 긴장재의 변형률 예측)

  • Zi, Goang-Seup;Jun, Ki-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.570-573
    • /
    • 2006
  • It is proposed that the electromechanical relation of the conductive materials with high electrical resistance may be used to estimate the current stress of prestressing tendons. To choose the best conductive material to this end, we studied the electromechanical relations of carbon fibers and metalic heat wires experimentally. It is found that the relation of carbon fibers can be modelled by a parabolic(or hyperbolic) function in the early stage of deformation. Metallic heat wires show a consistent linear relation during loading and unloading in the elastic deformation and are suitable for this purpose. We propose a new kind of prestressing tendons whose stress can be monitored.

  • PDF

Delamination of a composite laminated under monotonic loading

  • Achache, Habib;Benzerdjeb, Abdelouahab;Mehidi, Abdelkader;Boutabout, Benali;Ouinas, Djamel
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.597-605
    • /
    • 2017
  • Our work aims to analyze using the finite element method the evolution of the stress intensity factor (SIF) parameter K of three laminated folded plates stacks [$+{\alpha}$, $-{\alpha}$], made of the same epoxy matrix and different reinforcement fibers (boron, graphite and glass). Our results show that the angle of orientation of the boron/epoxy composite has no great influence on the variation of the parameter KI. Compared to composite graphite/epoxy and glass/epoxy, the laminated composite boron/epoxy reduces more the SIF KI in the middle of the plate for angles $0^{\circ}{\leq}{\alpha}{\leq}30^{\circ}$.

Development of AI Matrix Composite using Shape Memory Alloy (형상 기억 합금을 이용한 Al기 복합재료 개발)

  • Jeong, T.H.;Lee, D.J.;Kim, H.G.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.53-62
    • /
    • 1998
  • A simple analytical and finite element(FE) models are used to study the tensile properties of Al matrix composite with continuous TiNi fibers. The effects of residual stresses caused by the shape momory effects have been compared for various mechanical behaviors as a function of fiber volume fraction and degree of pre-strain and fiber configurations. It is found that both the back stress in the Al matrix induced by stiffness of TiNi fibers and the compressive stress in the matrix are caused of the strengthening mechanisms. Both theoretical and analytical results show quite good agreement and are closed to the experimental data except in high volume content.

  • PDF

Effects of Crack Resistance Properties of Ozone-treated Carbon Fibers-reinforced Nylon-6 Matrix Composites (탄소섬유의 오존처리가 나일론6 기지 복합재료의 크랙저항에 미치는 영향)

  • Han, Woong;Choi, Woong-Ki;An, Kay-Hyeok;Kim, Hong-Gun;Kang, Shin-Jae;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.363-369
    • /
    • 2013
  • In this work, the effects of ozone treatments on mechanical interfacial properties of carbon fibers-reinforced nylon-6 matrix composites were investigated. The surface properties of ozone treated carbon fibers were studied by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). Mechanical interfacial properties of the composites were investigated using critical stress intensity factor ($K_{IC}$). The cross-section morphologies of ozone-treated carbon fiber/nylon-6 composites were observed by scanning electron microscope (SEM). As a result, $K_{IC}$ of the ozone-treated carbon fibers-reinforced composites showed higher values than those of as-received carbon fibers-reinforced composites due the enhanced $O_{1s}/C_{1s}$ ratio of the carbon fiber by the ozone treatments. This result concludes that the mechanical interfacial properties of nylon-6 matrix composites can be controlled by suitable ozone treatments on the carbon fibers.