• Title/Summary/Keyword: stress and liver injury

Search Result 107, Processing Time 0.023 seconds

Ischemic Preconditioning Ameliorates Hepatic Injury from Cold Ischemia/Reperfusion

  • PARK Sang-Won;LEE Sun-Mee
    • Biomolecules & Therapeutics
    • /
    • v.13 no.3
    • /
    • pp.127-132
    • /
    • 2005
  • We investigated whether ischemic preconditioning (IPC) protects liver against cold ischemic injury using isolated perfused rat liver. Rat livers were preconditioned by 5 minutes of ischemia and 5 minutes of reperfusion and preserved for 30 hours at $4^{\circ}C$ in University of Wisconsin solution. Livers were then reperfused for 120 minutes. Oxygen uptake and bile flow in ischemic livers markedly decreased during reperfusion. These decreases were prevented by IPC. Portal pressure was elevated in cold ischemic and reperfused livers and this elevation was prevented by IPC. Lactate dehydrogenase and purine nucleoside phosphorylase activities markedly increased during reperfusion. These increases were prevented by IPC. The ratio of reduced glutathione to glutathione disulfide was lower in ischemic livers. This decrease was prevented by IPe. Our findings suggest that IPC protects the liver against the deleterious effect of cold ischemia/reperfusion, and this protection is associated with the reduced oxidative stress.

Fermented Aloe arborescens Miller Leaf Extract Suppresses Acute Alcoholic Liver Injury via Antioxidant and Anti-Inflammatory Effects in C57BL/6J Mice

  • Min Ju Kim;Joon Hurh;Ha-Rim Kim;Sang-Wang Lee;Hong-Sig Sin;Sang-Jun Kim;Eun-mi Noh;Boung-Jun Oh;Seon-Young Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.463-470
    • /
    • 2023
  • This study confirmed the change in functional composition and alcohol-induced acute liver injury in Aloe arborescens after fermentation. An acute liver injury was induced by administration of ethanol (3 g/kg/day) to C57BL/6J mice for 5 days. A fermented A. arborescens Miller leaf (FAAL) extract was orally administered 30 minutes before ethanol treatment. After fermentation, the emodin content was approximately 13 times higher than that of the raw material. FAAL extract significantly attenuated ethanol-induced aspartate aminotransferase, alanine aminotransferase, and triglyceride increases in serum and liver tissue. Histological analysis revealed that FAAL extract inhibits inflammatory cell infiltration and fat accumulation in liver tissues. The cytochrome P450 2E1, superoxide dismutase, and glutathione (GSH), which involved in alcohol-induced oxidative stress, were effectively regulated by FAAL extract in serum and liver tissues, except for GSH. FAAL also maintained the antioxidant defense system by upregulating heme oxygenase 1 and nuclear factor erythroid 2-related factor 2 protein expression. In addition, FAAL extract inhibited the decrease in alcohol dehydrogenase and aldehyde dehydrogenase activity, which promoted alcohol metabolism and prevented the activation of inflammatory response. Our results suggest that FAAL could be used as a potential therapeutic agent for ethanol-induced acute liver injury.

Protective Effects of Thiazolo[3,2-b]-1,2,4-Triazoles on Ethanol­Induced Oxidative Stress in Mouse Brain and Liver

  • Aktay Goknur;Tozkoparan Birsen;Ertan Mevlut
    • Archives of Pharmacal Research
    • /
    • v.28 no.4
    • /
    • pp.438-442
    • /
    • 2005
  • A series of 3-[1-(4-(2-methylpropyl) phenyl) ethyl]-1,2,4-triazole-5-thione (I) and its bicyclic condensed derivatives 6-benzylidenethiazolo[3,2-b]-1, 2,4-triazole-5(6H)-ones (IIa-IIf) were investigated for the prevention of ethanol-induced oxidative stress in liver and brain of mice. Administration of ethanol (0.1 mL/mice, p.o.) resulted in a drop of total thiol groups (T-SH) and non-protein thiol groups (NP-SH), and an increase in thiobarbituric acid reactive substances (TBARS) in both liver and brain tissue of mice (p<0.001). Among the compounds investigated (at a dose of 200 mg/kg, p.o.), I and IId ameliorated the peroxidative injury in these tissues effectively. Compounds IIa, IIc and IIe improved the peroxidative tissue injury only in brain. These findings suggest that certain condensed thiazolo-triazole compounds may contribute to the control of ethanol-induced oxidative stress in an organ selective manner.

Effect of Rheum undulatum Linne extract and Glycyrriza uralensis Fischer extract against arachidonic acid and iron-induced oxidative stress in HepG2 cell and CCl4-induced liver injury in mice (대황과 감초 병용의 항산화 및 간보호효과)

  • Lee, Eun Hye;Baek, Su Youn;Kim, Kwang-Youn;Lee, Seul-Gi;Kim, Sang Chan;Lee, Hyeong Sik;Kim, Young Woo
    • Herbal Formula Science
    • /
    • v.24 no.3
    • /
    • pp.163-174
    • /
    • 2016
  • Objectives : Rheum undulatum Linne and Glycyrriza uralensis Fischer are widely used herbal medicine. In this study, anti-oxidant and liver protective effects of R. undunlatum extract (RUE) and G. uralensis extract (GUE) were investigated in HepG2 cells, respectively. Oxidative stress and liver fibrosis were induced by arachidonic acid (AA) and iron, and CCl4.Methods : MTT assay was assessed for cell viability, and immunoblotting analysis was performed to detect expression of apoptosis related proteins. In addition, reactive oxygen species (ROS) and mitochondrial dysfunction were measured. In vivo, BALB/c mouse were orally administrated with the aqueous extract of 10 mg/kg RUE and 100 mg/kg GUE for 3 days and then, injected with CCl4 0.5 ml/kg body weight to induce acute liver damage. Serum ALT level was measured, and histological change was observed in Harris's hematoxylin and eosin stainResults : RUE and GUE pre-treatment increased relative cell viability in concentration dependent manner and altered the expression levels of apoptosis-related proteins such as procaspase 3, PARP and Bcl-xL. RUE and GUE also inhibited the mitochondrial dysfunction and excessive reactive oxygen species (ROS) production induced by AA and iron. In addition, RUE and GUE activated liver kinase B1 (LKB1), by increasing phosphorylation. Moreover, RUE and GUE treatment decreased liver injuries induced by CCl4, as evidenced by decreases in histological liver damage as well as serum alanine amino transferase (ALT) level.Conclusions : These data suggest that RUE and GUE has anti-oxidant and liver protective effects against AA and iron-induced oxidative stress and CCl4-induced liver injury.

Effect of Ganoderma Lucidum Pharmacopuncture on Chronic Liver Injury in Rats

  • Jang, Sun Hee;Yoon, Hyun Min;Kim, Bum Hoi;Jang, Kyung Jeon;Kim, Cheol Hong
    • Journal of Acupuncture Research
    • /
    • v.32 no.1
    • /
    • pp.13-22
    • /
    • 2015
  • Objectives : Alcohol-related liver disease is a major cause of morbidity and mortality worldwide. The present study was undertaken to determine whether Ganoderma lucidum pharmacopuncture(GLP) could protect against chronic liver injury induced by ethanol intoxication in rats. Methods : Sprague-Dawley rats were divided into 4 groups: normal, control, normal saline pharmacopuncture(NP), and GLP, with 8 animals in each. Each group, except normal, received ethanol orally. The NP and GLP groups were treated daily with NP and GLP respectively. The control group was not treated. All rats except the normal group were intoxicated for 4 weeks by oral administration of EtOH(6 g/kg BW). Two acupuncture points were used: Qimen($LR_{14}$) and Taechung($LR_3$). Body weight, histopathological analysis, liver function, activities of antioxidant enzymes, and immunohistochemistry were assessed. Results : GLP reduced the histological changes due to chronic liver injury induced by EtOH and significantly reduced the increase in the alanine aminotransferase(ALT) and aspartate aminotransferase(AST) enzymes. It significantly reversed the superoxide dismutase(SOD) and the catalase activities(CAT). It also significantly decreased BAX and increased Bcl-2 immunoreactivity expression. Conclusions : This study showed the protective efficacy of GLP against EtOH-induced chronic liver injury in SD rats by modulating ethanol metabolizing enzymes activity, attenuating oxidative stress, and inhibiting mitochondrial damage-mediated apoptosis.

Protective Effect of Spatholobi Caulis in Thioacetamide induced Acute Liver Injury of Rat (Thioacetamide로 유발한 간손상 모델에서 계혈등(鷄血藤)의 간보호 효과)

  • Oh, Min Hyuck;Shin, Mi-Rae;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.36 no.2
    • /
    • pp.31-42
    • /
    • 2021
  • Objectives : This study was undertaken to investigate the hepatoprotective effect of Spatholobi Caulis water extract (SC) to thioacetamide (TAA)-induced acute liver injury (ALI) in rats. Methods : The rats were injected intraperitoneally with TAA (200 mg/kg body weight) and orally administered SC (100 or 200 mg/kg b.w.) daily for 3 days. Liver biomarkers were assessed by serum glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and ammonia levels. Malondialdehyde (MDA) was measured both serum and liver tissue. In addition, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, anti-oxidant, and inflammation-related proteins were investigated by western blot analysis. Histological examination further confirmed though hematoxylin and eosin stain. Results : The SC treatment reduced liver function markers like GOT and GPT and also remarkably decreased ammonia level. Moreover, the elevated MDA level in TAA-induced group was significantly reduced by SC treatment. NADPH oxidase expression associated with oxidative stress including NOX2, NOX4, and p47phox markedly inhibited by SC administration. SC treatment exerted anti-oxidant effect through the increase of anti-oxidant enzyme including superoxide dismutase (SOD), Catalase, and heme oxygenase-1 (HO-1). The protein expressions of inflammatory cytokines such as tumor necrosis factor-�� (TNF-��), IL-6, and IL-1�� induced by nuclear factor-kappa B (NF-��B) activation were modulated through blocking the phosphorylation of inhibitor of nuclear factor ��B�� (I��B)��. SC treatment also improved histological alterations. Conclusion : These findings suggested that SC administration may be a potential candidate for the prevention or treatment of ALI.

Hepatic Injury Studied in Two Different Hypoxic Models (저산소 모델에 따른 간장 기능 손상에 관한 연구)

  • 윤기욱;이상호;이선미
    • Biomolecules & Therapeutics
    • /
    • v.8 no.2
    • /
    • pp.119-124
    • /
    • 2000
  • We hypothesized that the extent of hypoxic injury would be involved in reduction of oxygen delivery to the tissue. Livers isolated from 18 hr-fasted rats were subjected to $N_2$-induced hypoxia or low flow hypoxia. Livers were perfused with nitrogen/carbon dioxide gas for 45min or perfused with normoxic Krebs-Henseleit bicarbonate buffer (KHBB) at low flow rates around 1 ml/g liver/min far 45min, which caused cells to become hypoxic because of insufficient delivery of oxygen. When normal flow rates(4 ml/g liver/min) of KHBB (pH 7.4, 37$^{\circ}C$, oxygen/carbon dioxide gas) were restored for 30min reoxygenation injury occurred. Lactate dehydrogenase release gradually increased in $N_2$-induced hypoxia, whereas it rapidly increased in low flow hypoxia. Total glutathione in liver tissue was not changed but oxidized glutathione markedly increased after hypoxia and reoxygenation, expecially in $N_2$-induced hypoxia. Similarly, lipid peroxidation in liver tissue significantly increased after hypoxia and reoxygenation in low flow hypoxia. Hepatic drug metabolizing functions (phase I, II) were suppressed during hypoxia, especially in $N_2$-induced hypoxia but improved by reoxygenation in both models. Our findings suggest that hypoxia results in abnormalities in drug metabolizing function caused by oxidative stress and that this injury is dependent on hypoxic conditions.

  • PDF

Endogenous catalase delays high-fat diet-induced liver injury in mice

  • Piao, Lingjuan;Choi, Jiyeon;Kwon, Guideock;Ha, Hunjoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.3
    • /
    • pp.317-325
    • /
    • 2017
  • Non-alcoholic fatty liver disease (NAFLD) has become the most prevalent liver disease in parallel with worldwide epidemic of obesity. Reactive oxygen species (ROS) contributes to the development and progression of NAFLD. Peroxisomes play an important role in fatty acid oxidation and ROS homeostasis, and catalase is an antioxidant exclusively expressed in peroxisome. The present study examined the role of endogenous catalase in early stage of NAFLD. 8-week-old male catalase knock-out (CKO) and age-matched C57BL/6J wild type (WT) mice were fed either a normal diet (ND: 18% of total calories from fat) or a high fat diet (HFD: 60% of total calories from fat) for 2 weeks. CKO mice gained body weight faster than WT mice at early period of HFD feeding. Plasma triglyceride and ALT, fasting plasma insulin, as well as liver lipid accumulation, inflammation (F4/80 staining), and oxidative stress (8-oxo-dG staining and nitrotyrosine level) were significantly increased in CKO but not in WT mice at 2 weeks of HFD feeding. While phosphorylation of Akt (Ser473) and $PGC1{\alpha}$ mRNA expression were decreased in both CKO and WT mice at HFD feeding, $GSK3{\beta}$ phosphorylation and Cox4-il mRNA expression in the liver were decreased only in CKO-HF mice. Taken together, the present data demonstrated that endogenous catalase exerted beneficial effects in protecting liver injury including lipid accumulation and inflammation through maintaining liver redox balance from the early stage of HFD-induced metabolic stress.

Antioxidant and hepatoprotective effects of Korean ginseng extract GS-KG9 in a D-galactosamine-induced liver damage animal model

  • Jo, Yun Ho;Lee, Hwan;Oh, Myeong Hwan;Lee, Gyeong Hee;Lee, You Jin;Lee, Ji Sun;Kim, Min Jung;Kim, Won Yong;Kim, Jin Seong;Yoo, Dae Seok;Cho, Sang Won;Cha, Seon Woo;Pyo, Mi Kyung
    • Nutrition Research and Practice
    • /
    • v.14 no.4
    • /
    • pp.334-351
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: This study was designed to investigate the improvement effect of white ginseng extract (GS-KG9) on D-galactosamine (Ga1N)-induced oxidative stress and liver injury. SUBJECTS/METHODS: Sixty Sprague-Dawley rats were divided into 6 groups. Rats were orally administrated with GS-KG9 (300, 500, or 700 mg/kg) or silymarin (25 mg/kg) for 2 weeks. The rats of the GS-KG9- and silymarin-treated groups and a control group were then intraperitoneally injected Ga1N at a concentration of 650 mg/kg for 4 days. To investigate the protective effect of GS-KG9 against GalN-induced liver injury, blood liver function indicators, anti-oxidative stress indicators, and histopathological features were analyzed. RESULTS: Serum biochemical analysis indicated that GS-KG9 ameliorated the elevation of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) in GalN-treated rats. The hepatoprotective effects of GS-KG9 involved enhancing components of the hepatic antioxidant defense system, including glutathione, glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT). In addition, GS-KG9 treatment inhibited reactive oxygen species (ROS) production induced by GalN treatment in hepatocytes and significantly increased the expression levels of nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) proteins, which are antioxidant proteins. In particular, by histological analyses bases on hematoxylin and eosin, Masson's trichrome, α-smooth muscle actin, and transforming growth factor-β1 staining, we determined that the administration of 500 mg/kg GS-KG9 inhibited hepatic inflammation and fibrosis due to the excessive accumulation of collagen. CONCLUSIONS: These findings demonstrate that GS-KG9 improves GalN-induced liver inflammation, necrosis, and fibrosis by attenuating oxidative stress. Therefore, GS-KG9 may be considered a useful candidate in the development of a natural preventive agent against liver injury.

Effects of water extract of Paeoniae Radix Alba on a thioacetamide induced acute liver injury rat model (Thioacetamide 유발 급성 간손상 동물모델에 백작약 열수 추출물이 미치는 효능)

  • Lee, Se Hui;Shin, Mi-Rae;Lee, Ji Hye;Roh, Seong-Soo
    • Journal of Nutrition and Health
    • /
    • v.54 no.2
    • /
    • pp.224-237
    • /
    • 2021
  • Purpose: Paeonia Radix Alba is a traditional herbal medicine used to treat the liver and the spleen. Many studies have reported that Paeonia Radix Alba extract (PR) affects liver injury, but there has been no study on liver injuries induced by thioacetamide (TAA). Therefore, we aimed at evaluating the effect of PR on a TAA-induced acute liver injury (ALI) model. Methods: The antioxidant activity of PR was assayed by the content of total polyphenol, total flavonoid, 1,1-diphenyl-2'-picrylhydrazyl (DPPH), and 2,2'-azino-bis (3-ethylbenzo-thiazoline-6-sulfonicacid) (ABTS) radical scavenging activities in vitro test. ALI was induced via-intraperitoneal injection of TAA (200 mg/kg body weight) for three consecutive days. Also, silymarin (100 mg/kg body weight) and PR (100 or 200 mg/kg body weight) were administered at 1 hours 30 minutes prior to TAA treatment. The levels of ammonia, glutamic oxaloacetic transaminase (GOT), and glutamic pyruvic transaminase (GPT) were analyzed using an assay kit. The expressions of antioxidant proteins including Nrf2, Keap1, HO-1, SOD, catalase, and GPx-1/2 and oxidative stress-related proteins including NOX2, p47phox, and p22phox were evaluated by the western blot analysis. Results: PR showed excellent antioxidant activity in vitro. TAA administration increased the levels of ammonia, GOT, and GPT in the ALI control group compared to the normal group, whereas it was significantly reduced by PR pretreatment. Moreover, NADPH oxidase protein expressions were upregulated after TAA treatment, while the elevated expressions were inhibited by PR pretreatment. The expressions of antioxidant protein were downregulated in the ALI control group, whereas Nrf2 activation in the PR group was accompanied by increased levels of antioxidant enzymes. Conclusion: PR administration increased the antioxidant enzymes via activation of the Keap1/Nrf2 pathway and inhibited the protein levels of NADPH oxidase factors. Taken together, these results showed that PR treatment may be considered to ameliorate acute liver injury induced by TAA.