• 제목/요약/키워드: stress amplitude

검색결과 535건 처리시간 0.025초

일정 및 변동하중하의 레일강의 피로특성 (Fatigue Properties of Rail Steel Under Constant Amplitude Loading and Variable Amplitude Loading)

  • 김철수;김정규
    • 대한기계학회논문집A
    • /
    • 제25권4호
    • /
    • pp.654-661
    • /
    • 2001
  • In this study, fatigue growth behavior of the transverse crack, which was the most dangerous damage among the various types of rail defects, was investigated using the notched keyhole specimen under constant amplitude loadings. Fatigue limit of smooth specimen in rail steel at R=0 was 110MPa, and the fatigue crack initiation life in the region of the low stress amplitude (ie. long life) occupied the major portion of the total fatigue life. The fatigue strength under variable amplitude loading was converted to the equivalent fatigue strength based upon. Miners rule, which was estimated approximately 9% lower than that under constant amplitude loading. Also, in the low ΔK(sub)rms region ($\leq$21MPa√m), fatigue crack growth rate (da/dN) under constant amplitude loading was higher than that under variable amplitude loading, whereas the tendency was reversed in the high ΔK(sub)rms region. It is believed that this behavior is due to the transition of fracture appearance.

타이로드의 구조적 내구성 해석 (Structural Durability Analysis of Tie Rod)

  • 한문식;조재웅
    • 한국기계가공학회지
    • /
    • 제11권5호
    • /
    • pp.68-75
    • /
    • 2012
  • This study aims at the structural analysis of vibration and fatigue according to the tie rod configuration. The maximum displacement amplitude is happened at 156Hz by harmonic vibration analysis, this tie rod model can be broken as the weakest state. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sine wave' becomes most stable. In case of 'Sine wave' with the average stress of 0MPa and the amplitude stress of 570MPa, the possibility of maximum damage becomes 70%. This stress state can be shown with 140 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The structural result of this study can be effectively utilized with the design on tie rod by investigating prevention and durability against its damage.

펄스-에코법을 이용한 접착접합 시험편의 정량적 비파괴 평가 (Quantitative Nondestructive Evaluation of Bonded Joints utilizing Pulse-Echo Ultrasonic Test)

  • 오승규;황영택;이원
    • 한국정밀공학회지
    • /
    • 제20권3호
    • /
    • pp.157-164
    • /
    • 2003
  • The pulse-echo method is one of the most widely used ultrasonic techniques for application of nondestructive evaluation. Particularly, quantitative nondestructive evaluation of defects has been considered more important to assure the reliability and the safety of structure. Frequency energy in adhesive joints is based on the ultrasonic wave analysis. The attenuation coefficient upon wave amplitude and the frequency energy that is expressed in the term of wave pressure amplitude were utilized for the primary wave experiment. By means of a control experiment, it was confirmed that the variation of the frequency energy in adhesive joints depends on transition by stress variation. In this paper, the ultrasonic characteristics were measured for single lap joint and Double Cantilever Beam specimen with different fracture modes that was subjected to stress. Consequently, the data that was obtained from the adhesive specimen was analytically compared to the fracture mechanics parameter

알루미늄 합금(AI7050-T7451)의 반복 굽힘 하중하의 프레팅 피로거동 평가 (Evaluation of Fretting Fatigue Behavior of Aluminum Alloy(A17050-T7451) Under Cyclic Bending Load)

  • 김종성;윤명진;최성종;조현덕
    • 한국기계가공학회지
    • /
    • 제9권1호
    • /
    • pp.25-34
    • /
    • 2010
  • Fretting damage reduces fatigue life of the material due to low amplitude cyclic sliding and changes in the contact surfaces of strongly connected machine and structures such as bolt, key, fixed rivet and connected shaft, which have relative slip of repeatedly very low frequency amplitude. In this study, the fretting fatigue behavior of 7050-T7451 aluminum alloys used mainly in aircraft and automobile industry were evaluated. The plain fatigue test and fretting fatigue test under cyclic bending load carried out commercial bending fatigue tester and specially devised equipments to cause fretting damage. From these experimental work, the following results obtained: (1) The plain fatigue limit for stress ratio R=-l was about 151MPa. (2) In case of fretting fatigue, fatigue limit for stress ratio R=-l about 72MPa, the fatigue limit for R=0 about 81MPa, and the fatigue limit for R=0.3 about 93MPa. (3) The fatigue limit reduction rates by the fretting damage were about 52%(R=-1), 46%(R=0) and 38%(R=0.3) respectively. (4) The fatigue limit reduction rate decreased with stress ratio increase. In fretting bending test, as stress ratio increased, occurrence of initial oblique crack by fretting decreased or phased out, so that fracture surfaces were formed by plain fatigue crack occurrence, and such tendency was notable as stress amplitude increased. (5) Tire tracks and rubbed scars were observed in the fracture surface and contacted surface.

반복하중 하에서 부착응력-슬립 거동 실험적 연구 (Experimental Study of Bond Stress-Slip Behavior under Repeated Loading)

  • 오병환;김세훈;김지상;신용석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.215-218
    • /
    • 2003
  • To analyze a bond stress-slip behavior between a reinforcing bar and concrete under repeated loading, pull-out fatigue test was performed. Major variables were repeated stress levels and cycle numbers. Test specimen was taken repeated constant amplitude loading before it was fractured by pull-out test. Increments of bond strength and slip according to repeated stress level and cycle numbers were analyzed. On the basis of test results, Local bond stress-slip relationship under repeated loading were formulated

  • PDF

반복 응력-변형률 시험을 통한 반복하중 조건에서 원전 주요 구조재료의 변형거동 평가 (Evaluation of Deformation Behavior of Nuclear Structural Materials under Cyclic Loading Conditions via Cyclic Stress-Strain Test)

  • 김진원;김종성;권형도
    • 한국압력기기공학회 논문집
    • /
    • 제13권1호
    • /
    • pp.75-83
    • /
    • 2017
  • This study investigated deformation behavior of major nuclear structural materials under cyclic loading conditions via cyclic stress-strain test. The cyclic stress-strain tests were conducted on SA312 TP316 stainless steel and SA508 Gr.3 Cl.1 low-alloy steel, which are used as materials for primary piping and reactor pressure vessel nozzle respectively, under cyclic load with constant strain amplitude and constant load amplitude at room temperature (RT) and $316^{\circ}C$. From the results of tests, the cyclic hardening and softening behavior, stabilized cyclic stress-strain behavior, and ratcheting behavior of both materials were investigated at both RT and $316^{\circ}C$. In addition, appropriate considerations for cyclic deformation behavior in the structural integrity evaluation of major nuclear components under excessive seismic condition were discussed.

헬기의 진동과 피로에 대한 내구성 연구 (Study on Durability by Vibration and Fatigue of the Helicopter)

  • 한문식;조재웅
    • 한국기계가공학회지
    • /
    • 제10권6호
    • /
    • pp.63-69
    • /
    • 2011
  • This study analyzes stress, fatigue and vibration on main rotor and body of helicopter. The maximum stress is shown on adjoint part between body and main rotor at the lower position of main rotor. As the maximum displacement amplitude is happened at 4000Hz, there is no resonance and the state of helicopter becomes safe at hovering without the abnormal air current and the disabled rotor. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample History' with the average stress of 0MPa to $-10^5MPa$ and the amplitude stress of 0MPa to $8.539{\times}10^5MPa$, the possibility of maximum damage becomes 3%. This stress state can be shown with 5 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The structural result of this study by using the analysis of vibration and fatigue can be effectively utilized for safe and durable design of helicopter.

생리학적인 하중 조건에서 소 상완골 연골의 기계적 특성 (In Situ Mechanical Response of Bovine Humeral Head Articular Cartilage in a Physiological Loading Environment)

  • 박성훈
    • 한국정밀공학회지
    • /
    • 제25권1호
    • /
    • pp.145-150
    • /
    • 2008
  • One of the unresolved questions in articular cartilage biomechanics is the magnitude of the dynamic modulus and tissue compressive strains under physiological loading conditions. The objective of this study was to characterize the dynamic modulus and compressive strain magnitudes of bovine articular cartilage at physiological compressive stress level and loading frequency. Four bovine calf shoulder joints (ages 2-4 months) were loaded in Instron testing system under load control, with a load amplitude up to 800 N and loading frequency of 1 Hz, resulting in peak engineering stress amplitude of ${\sim}5.8\;MPa$. The corresponding peak deformation of the articular layer reached ${\sim}27%$ of its thickness. The effective dynamic modulus determined from the slope of stress versus strain curve was ${\sim}23\;MPa$, and the phase angle difference between the applied stress and measured strain which is equivalent to the area of the hystresis loop in the stress-strain response was ${\sim}8.3^{\circ}$. These results are representative of the functional properties of articular cartilage in a physiological loading environment. This study provides novel experimental findings on the physiological strain magnitudes and dynamic modulus achieved in intact articular layers under cyclical loading conditions.

저사이클 피로하중을 받는 316L 스테인리스강의 피로수명 분석 및 예측 (Fatigue Life Analysis and Prediction of 316L Stainless Steel Under Low Cycle Fatigue Loading)

  • 오혁;명노준;최낙삼
    • 대한기계학회논문집A
    • /
    • 제40권12호
    • /
    • pp.1027-1035
    • /
    • 2016
  • 내식성과 기계적 성능이 우수한 316L 스테인리스 강의 저주기 변형률제어 피로시험에서 3가지 변형률진폭과 3가지 변형률비의 조건이 피로수명에 미치는 효과를 분석하였다. 낮은 변형률범위에서 곡선이 거의 중첩되는 Masing 거동이 나타나고, 높은 변형률범위에서 비선형거동 응력범위가 서로 크게 벗어나는 non-Masing 거동과 함께 평균응력의 감소가 나타났다. 소성 변형률에너지를 이용하여 저주기 피로수명을 예측하고 non-Masing 거동을 고려한 수명예측 방법의 정확성 여부를 검토하였다. 각각의 변형률진폭과 변형률비의 조건에서 초기 수 사이클 동안 반복경화 현상 후 장시간동안 점진적으로 낮아져 연화하다가 파괴 되었다. 저사이클 피로수명을 정확히 예측하기 위해서는 변형률진폭에 따라 Masing 및 non-Masing 거동을 구분하고, 이를 반영한 수명예측식을 적용해야 함을 알았다.

맥동유동하에 있는 탄성혈관에서 벽면운동과 임피던스 페이즈앵글이 벽면전단응력에 미치는 영향 (Influence of Wall Motion and Impedance Phase Angle on the Wall Shear Stress in an Elastic Blood Vessel Under Oscillatory Flow Conditions)

  • 최주환;이종선;김찬중
    • 대한의용생체공학회:의공학회지
    • /
    • 제21권4호
    • /
    • pp.363-372
    • /
    • 2000
  • 벽면운동과 임피던스 페이즈앵글(압력파와 유량파 사이의 시간차)이 벽면전단응력의 크기와 분포에 미치는 영향을 규명하기 위해 맥동유동하에 있는 직선 탄성혈관에서 전산유체해석을 수행하였다. 탄성을 갖는 직선혈관의 경우에는 벽면운동과 임피던스 페이즈앵글을 고려한 섭동해가 존재하는데, 이를 본 연구의 수치해와 비교함으로 수치해의 타당성을 입증하였다. 해석결과, 혈관의 벽면운동으로 인해 축방향 속도분포와 압력구배의 값에 어떤 추가분이 발생하는 것을 관찰하였다. 이러한 추가분에 의해 벽면전단응력(wall shear stress) 및 압력구배(pressure gradient)의 진폭(amplitude: time-varying component)은 감소하고 평균값(mean: time-averaged component)에도 변화를 보였는데 그 변화의 경향은 임피던스 페이즈앵글에 따라 매우 다른 모습을 보였다. 즉, 임피던스 페이즈앵글이 음의 값을 갖게 될 수록 벽면전단응력의 평균은 감소하고 진폭은 증가하는 경향을 보였다. $\pm$4%의 벽면운동이 있는 경우 대동맥에서 임피던스 페이즈앵글의 변화 가능범위인 0$^{\circ}$에서 -90$^{\circ}$로 페이즈 앵글을 감소시켰을 때 벽면전단응력의 평균값은 10.5% 감소하고 진폭은 17.5% 증가하였다. 그러므로 고혈압환자와 같이 음의 큰 페이즈앵글을 갖는 경우 벽면 전단응력의 시간에 따른 변화량(진폭/평균)이 상대적으로 커지므로 low and oscillatory shear stress 이론에 의하면 동맥경화에 더 민감하게 된다.

  • PDF