• Title/Summary/Keyword: strength safety

Search Result 2,742, Processing Time 0.026 seconds

A Study on Safety Design of Auxiliary tank in a high-pressure air compressor (고압공기압축기의 보조탱크 안전설계에 관한 연구)

  • 강동명;오진수;이장규;우창기
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1997.11a
    • /
    • pp.31-36
    • /
    • 1997
  • Strength test using strain rosette gage have been conducted to investigate safety of an auxiliary tank in a high-pressure air compressor. Thickness of auxiliary tanks in 6063-T5 aluminum at toy are 9mm and 17mm. The result of strength test make a comparison the design in strength of materials by nominal stress and the design in fracture mechanics with consideration of crack size. Summarizing the result: Comparing with the safe working pressure of the strength test and that of the design method in strength of materials by nominal stress with the experimental values, it makes difference 11% and 39% for 9mm and 17mm thickness of auxiliary tanks, respectively, and that of the design method by fracture mechanics, it makes difference 4% and 5% for them, respectively. It is confirmed that the design by fracture mechanics is more economical and safe design than the design in strength of materials by nominal stress.

  • PDF

A Study on Fatigue Strength of Austenitic Stainless Steel for Centrifuge (원심분리기용 오스테나이트계 스테인리스강의 피로강도에 관한 연구)

  • Lee, Mee-Hae;Kim, Yong-Soo;Park, Joon-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.3
    • /
    • pp.12-16
    • /
    • 2008
  • For industrial centrifuges, the state of their welding areas, even with a naked-eye observation, offers potential safety problems such as inconsistent bead formation. STS304, which is used mainly in centrifuges, is made of metal alloys with chrome and nickel as the main ingredients, offering excellent corrosion resistance, thermal resistance, and high strength, and thus allowing it to be used for diverse purposes. This paper conducted tensile and fatigue tests of STS304 to improve the safety of centrifuges. In the findings, for the static behavior of the STS304 material, welded specimens increased their yield and tensile strength compared with the base test specimens, but decreased their elongation ratio. Also, the data dispersion phenomenon of welded specimens remarkably increased.

A Study on the Strength Change of Used Pipe Support (1) (재사용 파이프서포트의 내력변화 연구 (1))

  • Paik, Shin-Won;Ro, Min-Lae
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.93-97
    • /
    • 2004
  • Slab formwork consists of sheathing, stringer, hanger and shore. There are several types of adjustable individual shores. In constructions site, pipe supports are usually used as shores. The strength of a pipe support is decreasing as it is frequently being used at the construction site. In this study, 2857 pipe supports were bought to fine out the strength change of used pipe support and unused pipe supports according to aging. Among these pipe supports, 2337 pipe supports were lent to the construction companies free of charge. Compressive strength was measured by knife edge test and plate test at each 3 month. Test results show that the strength of unused pipe supports almost equaled to the strength of new pipe supports until 191 days, but the strength of used pipe supports at 191 days was lower than the strength of new pipe supports. So, the strength of used pipe supports at 191 days was not satisfied the specification of KS F 8001. According to these results, it shows that attention has to be paid to formwork design using used pipe supports. Therefore, the paresent study results will be able to provide a firm base to design slab formwork and test the performance of used temporary structure and prevent formwork collapses.

The Strength Characteristics of Polymer Composites Injection Parts for Lightness and Safety (경량화와 안전을 위한 폴리머 복합재료 사출품의 강도특성)

  • Yun, Yeo-Kwon;Kim, Jin-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.4
    • /
    • pp.101-108
    • /
    • 2011
  • In this paper deals with strength of glass fiber reinforced plastics produced by shouting machine was investigated by universal testing instrument. We can obtain following results by performing the strength evaluation of polymer composite material according as varied environment temperature. The effect of environmental temperature on Strength properties was more sensitive in the weld specimen than parent. When changed environmental temperature, variation of strength in the parent was much bigger than it of weld specimen, that is, matrix in the parent, orientation in the specimen ware more sensitive to environmental strength. Tensile strength of polycarbonate matrix was similar regardless of mold temperature.

A Study on Strength Properties of Mortar added Nano Titanium Dioxide (나노 TIO2 첨가 모르타르의 강도 특성에 관한 연구)

  • Choi, Eung-Kyoo;Kim, Yeon-Hee;Park, Jong-Keun
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.2
    • /
    • pp.83-87
    • /
    • 2010
  • Functional Concrete Added Titanium Dioxide(TIO2) for photocatalysis was about a result strength Reduction by recent studies. Therefore, The purpose of the study is to review the possibility of TIO2 for using concrete admixture. As a result, Nano TIO2 for concrete admixture helps increased strength of concrete and here are some of the details. The compressive strength and flexural strength of cement mortar added same amount of Nano SF and TIO2 for admixture were development of strength a certain level each other. when Nano admixture use 10%, SF and TIO2 showed development of strength 60% and 40% each other gradually. If I use over 10% Both SF and TIO2, they showed irregular strength variations.

An Experimental Study on the Fracture Strength of Steel Fiber Reinforced Concrete

  • Chai, Won-Kyu
    • International Journal of Safety
    • /
    • v.11 no.1
    • /
    • pp.19-21
    • /
    • 2012
  • In this thesis, fracture test was performed in order to investigate the fracture strength of SFRC(steel fiber reinforced concrete) structures. The relationship between the compressive force and strain value of SFRC specimens were observed under the compressive strength test. From the fracture test results, the relationship between percentage of fiber by volume, compressive strength, elastic modulus, and tensile strength of SFRC beams were studied, and the measured elastic modulus of SFRC were compared with the calculated elastic modulus by ACI committee 544.

Statistical Estimation of Specified Concrete Strength by Applying Non-Destructive Test Data (비파괴시험 자료를 적용한 콘크리트 기준강도의 통계적 추정)

  • Paik, Inyeol
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.52-59
    • /
    • 2015
  • The aim of the paper is to introduce the statistical definition of the specified compressive strength of the concrete to be used for safety evaluation of the existing structure in domestic practice and to present the practical method to obtain the specified strength by utilizing the non-destructive test data as well as the limited number of core test data. The statistical definition of the specified compressive strength of concrete in the design codes is reviewed and the consistent formulations to statistically estimate the specified strength for assessment are described. In order to prevent estimating an unrealistically small value of the specified strength due to limited number of data, it is proposed that the information from the non-destructive test data is combined to that of the minimum core test data. The the sample mean, standard deviation and total number of concrete test are obtained from combined test data. The proposed procedures are applied to an example test data composed of the artificial numerical values and the actual evaluation data collected from the bridge assessment reports. The calculation results show that the proposed statistical estimation procedures yield reasonable values of the specified strength for assessment by applying the non-destructive test data in addition to the limited number of core test data.

A Experimental Study on Strength Safety of Rail Steel using Gas Pressure Welding (레일 가스압접부의 강도 안전성에 관한 실험적 연구)

  • Kim, Kyung-Seob
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.3
    • /
    • pp.266-271
    • /
    • 2012
  • This study was carried out for the purpose of improving driving safety and comfort of the railways quickly becoming popular. To conducted gas pressure welding to ensure the strength safety of continuous welded rail and rotating bending test tensile test was conducted. The element to determine the tensile strength of gas pressure welds at experiments be attributed to more upsetting length than pressure, according to increases of upsetting length, from brittle fracture to ductile fracture was observed. Through the biopsy of the fracture surface, according to the presence of brittle fracture could be evaluated to strength safety. In addition, mechanical strength of gas pressure welding depending on changes in upsetting length was different. Rotary bending test results were obtained to the infinite life according to exhibited higher fatigue limit of 373MPa at upsetting length 25mm.

An Experimental Study on the Safety of Glass Fiber Reinforced Plastic Pipes under Fatigue Load (피로하중을 받는 유리섬유 보강 플라스틱관의 안전성에 관한 연구)

  • 채원규
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.154-159
    • /
    • 1996
  • In this thesis, a series of loading tests are conducted in order to investigate the fracture safety of GFRP(Glass Fiber Reinforced Plastics) pipes under fatigue load which are widely used in the developed countries becauses of their natural of anticorrosion and lightweight etc. . Fatigue test is performed by changing number of laminates and loading cycles to examine the flexural strains, the ductility and the fatigue strength for two million repeated loading cycles. From the fatigue test results, it was found that the larger the laminates of GFRP pipes is, the larger the stiffness of GFRP pipes under the fatigue load increases. This phenomenon is true until the fatigue failure. According to the S-N curve drawn by the regression analysis on the fatigue test results, the fatigue strength of percent of the static ultimate strength increases by increasing the laminates of GFRP pipes. The fatigue strength with two million repeated leading cycles in GFRP pipes with the laminates of GFRP pipes varing 15, 25, 35 shows about 75%, 80%, 84% on the static ultimate strength, respectively.

  • PDF

A Study on the Strength Safety of an Aluminium Liner for a Hydrogen Fuel Storage Tank (수소연료 저장탱크용 알루미늄 라이너의 강도안전성에 관한 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.16-21
    • /
    • 2012
  • In this study, the strength safety for 110 liter hydrogen fuel storage tank with 70MPa filling pressure has been analyzed using a FEM technique. The strength safety of a composite fuel tank in which is fabricated by an aluminum liner of 6061-T6 and carbon fiber wound composite layers of T800-24K and T700-12K of Toray, and MR60H-24P of Mitsubishi Ray has been investigated based on the criterion of a strength safety of US DOT-CFFC and Korean Standard. The FEM computed results on the strength safety of 70MPa hydrogen gas tank showed that the hydrogen fuel storage tank in which is fabricated by T800-24K and T700-12K of Toray, and MR60H-24P of Mitsubishi Ray is safe because those two carbon fibers have very similar material properties. But, the composite storage tank with a filling pressure of 70MPa in which is fabricated by T700-12K of Toray may not guaranty the strength safety, and thus this study recommends a composite hydrogen fuel tank under 60MPa.