• Title/Summary/Keyword: strength reduction

Search Result 2,880, Processing Time 0.031 seconds

Characteristic of Strength Increase in Clayey Soil by Electrokinetic Injection (동전기 주입에 의한 점성토의 강도증가 특성)

  • Kim, Ki-Nyun;Kim, Jong-Yun;Han, Sang-Jae;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.910-915
    • /
    • 2005
  • In this study a series of tests(bench scale test) are carried out for increasing in strength of clayey soil by EK-Injection method. In addition, the effects of strength increase in the treated sample are measured by operating the vane shear test device during 25 days at 5 days intervals in order to estimate the effect of ground improvement caused by diffusion. The test results show that the strength increase was developed approximately double to 7 times in comparison to initial shear strength, and outstanding strength increase was created as much as 7 times while injecting the sodium silicate and phosphoric acid in anolyte and catholyte. In addition, the measured shear strength with the influence of diffusion and reduction of water-content had a tendency to converge in constant value in proportion to elapsed time. As a result of this study, strength increment developed by the influence of EK-Injection and diffusion rather than the reduction of water-content were high as 1000% on average

  • PDF

A Study on the Properties of Mixture Proportion and Compressive Strength of Concrete with the Kind of Mineral Admixtures (혼화재 종류에 따른 콘크리트의 배합 및 압축강도 특성에 관한 연구)

  • Lee Eun-Hi;Shon Myeong-Soo;Han Min-Cheoi;Cha Cheon-Soo;Kim Seong-Soo;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.51-54
    • /
    • 2004
  • This paper investigated the results of mixture proportion and compressive strength of concrete incorporating mineral admixtures. W/B and contents of mineral admixtures were selected as test parameters. According to test results, use of mineral admixtures resulted in a reduction of fluidity and air contents caused by increased fine particles and absorption effect of FA on reduction of AE agent. Thus, increase of SP and AE agent was needed to maintain the same fluidity and air content as plain concrete. At early stage, use of CKD was beneficial to the compressive strength while at 28days. incorporation of FA and BS had favorable effect on the compressive strength.

  • PDF

An Analytical Study on Ductility of Reinforced Concrete Columns under Tension Controlled Region (인장지배영역에서의 철근콘크리드 기둥의 연성에 관한 해석적 연구)

  • 손혁수;김준범;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.527-532
    • /
    • 1997
  • Design strength of structural members could be determined by applying a strength reduction factor to nominal strength. At the beginning point of the transition region for the strength reduction factor, P=0.1$\sigma$$_{ck}A_g$, only sectional area and concrete strength are adopted as the variables of P=0.1$\sigma$$_{ck}A_g$. Therefore, P=0.1$\sigma$$_{ck}A_g$ is the empirically adopted which does not consider steel ratio, steel yielding stress, and steel arrangement. So, this research was perpormed the computer program for the analysis of axial force-moment-curvature relationship of reinforced concrete columns by sectional behaviour nonlinear analysis using a concrete compressive stress-strain curve, in order to investigate the ductility of reinforced concrete columns. As a result, ductility indicies of axial force, P=0.1$\sigma$$_{ck}A_g$, represented the lack of consistency of the indicies value for the various sections.

  • PDF

Effects of Thermomechanical Treatment on 7075-Al Alloy (7075-Al 합금에 대한 가공 열처리 효과에 관한 연구)

  • Choi, S.C.;Kang, C.S.
    • Journal of Korea Foundry Society
    • /
    • v.1 no.2
    • /
    • pp.10-18
    • /
    • 1981
  • In this paper tensile strength and fatigue propagation rate were investigated by aging treatment $(T_6)$ and thermomechanical treatment (TMT) of 7075-Al Alloy specimen. The results of teat showed that TMT improved tensile strength and fatigue crack propagation due to bomogenization of microstructure. In TMT, the results of comparison between T-H' AHA and T-AHA and $T-AH{\cdot}{\cdot}{\cdot}$and $T-HA{\cdot}{\cdot}{\cdot}$were showed that T-AHA and $T-AH{\cdot}{\cdot}{\cdot}$treatments, after solution treatment, which are aging treated before rolling have higher tensile strength. Our investigation on high temperature stability at the Specimen for $T_6$, T-AHA, $T-AH{\cdot}{\cdot}{\cdot}$treatments resulted in rapid reduction of tensile strength over $150^{\circ}C$, but the reduction of tensile strength for specimen of TMT was smoothed than $T_6$.

  • PDF

A study on the mechanical properties of the polymer cement mortar in a high temperature region (고온영역에서의 폴리머시멘트모르타르의 역학적 특성연구)

  • Yoon, Ung-Gi;Seo, Dong-Goo;Kwon, Young-Jin;Kim, Hyung-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.113-114
    • /
    • 2014
  • Though polymer cement mortar is widely used to repair or reinforce concrete as it has superior adhesion, dense internal structure, chemical resistance, and workability in comparison to those of general cement mortar, studies on its behaviors in high temperature environment such as fire is urgently required. Accordingly, in this experiment, the degrees of reduction in the compressive strength at different temperatures was grasped applying ISO834 Heating Curve, and the effect of polymer content and type on compressive strength could be determined. As a result of this experiment, it is found that polymer type and content have a big effect on reduction of compressive strength in high temperature range, and not only the dynamic characteristics but also the combustion characteristics in high temperature range are required to be studied considering occurrence of a fire in the future.

  • PDF

Research on the mechanical properties of membrane connections in tensioned membrane structures

  • Zhang, Yingying;Zhang, Qilin;Li, Yang;Chen, Lu
    • Structural Engineering and Mechanics
    • /
    • v.49 no.6
    • /
    • pp.745-762
    • /
    • 2014
  • As an important part, the connections generally are important for the overall behavior of the structure and the strength and serviceability of the connection should be ensured. This paper presents the mechanical properties of membrane connections in tensioned membrane structure. First, the details of common connections used in the membrane structure are introduced. Then, the common connections including membrane seam, membrane-flexible edge connection and membrane-rigid edge connection are tested and the corresponding failure mechanisms are discussed. Finally, the effects of connection parameters on the connection strength are investigated and proper connection parameters are proposed. The strength reduction factors corresponding to different connection types are proposed, which can be references for the design and analysis of membrane structures.

A study of the gradient establishment for Rock slope considering joints characteristics. (절리 특성을 고려한 암반사면의 절취경사 기준 설정에 관한 연구)

  • 이수곤;김부성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.501-508
    • /
    • 2002
  • The percentage of a mountainous district in our country is comparatively high but the concern for rock mass has been disregarded for a long time. Especially for rock slope, the most important factors are geometric characteristics and their shear strength parameter. In this paper, parametric studies are performed using the distinct element computer program UDEC-BB for rock slopes. Parameters adopted in this paper are joint angle, spacing, persistence, aperture and shear strength parameters (JRC, JCS, basic friction angle). To estimate slope stability, shear strength reduction method is used. The most important factors affecting rock slope stability are joint angle and spacing. The relationship between average displacement calculated by UDEC-BB and safe factor by shear strength reduction method is researched.

  • PDF

Role of class-C fly Ash in the Development of Strength & Microstructure of Fly Ash-GGBS Geopolymer

  • Sasui, Sasui;Kim, Gyu Yong;Lee, Sang Kyu;Son, Min jae;Hwang, Eui Chul;Nam, Jeong Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.79-80
    • /
    • 2020
  • The class-C fly ash (FA) and ground granulated blast-furnace slag (GGBS) based geopolymer activated in NaOH (4M) was studied regarding compressive strength, porosity, microstructure and formation of crystalline phases. The class-C FA and GGBS blends resulted in reduced strength and increased porosity of the matrix with the increase in FA content. The unreactivity of calcium in blends was observed with increasing FA content leading to strength loss. it is evident from XRD patterns that calcium in FA did not contribute in forming CSH bond, but formation of crystalline calcite was observed. Furthermore, XRD analyses revealed that reduction in FA leads to the reduction in crystallinity and SEM micrographs showed the unreactive FA particles which hinder the formation of denser matrix.

  • PDF

The Microstructure and Mechanical Property of 0.19C-1.17Cr Steel with Cold Drawing (0.19C - 1.17Cr 강의 냉간인발조직과 기계적 성질)

  • Shin J. H.;Jang B. L.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.11a
    • /
    • pp.85-90
    • /
    • 2001
  • The microstructure and mechanical property of 0.19C-1.17Cr steel were investigated with cold drawing. This commercial steel has the microstructure that is consist of ferrite and pearlite. The tensile and yield strength are increased as the reduction ratio of cold drawing is increased. It was clear that mechanical properties could be improved by combination of the heat treatments and reduction ratio. Yield strength. tensile strength, and impact value were formulated as a constitutive function of cold drawing ratio, respectively.

  • PDF

Study on the Adiabatic Temperature Rise of High Strength Concrete with Design Compressive Strength and Mixing Temperature (타설온도 및 혼화재 치환에 따른 고강도콘크리트의 단열온도상승에 관한 연구)

  • Lee, Byoung-Chun;Kim, Gyu-Yong;Koo, Kyung-Mo;Nam, Jeong-Soo;Ham, Eun-Young;Lee, Bo-Kyeong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.101-102
    • /
    • 2012
  • In this study, it was evaluated about hydration heat reduction under hot weather condition. Placement temperature set 25℃ and 35℃, For hydration heat reduction was applied such as FA and BFS. As a results, mixture of BFS70% is the most effective hydration temperature reduction.

  • PDF