• Title/Summary/Keyword: strength ratio

Search Result 7,448, Processing Time 0.042 seconds

Influence of Paste Fluidity and Vibration Time for Fundamental Properties of Porous Concrete (시멘트체이스트의 유동성 및 진동다짐시간이 포러스콘크리트의 기초물성에 미치는 영향)

  • 이성일;유범재;장종호;김재환;백용관;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.311-316
    • /
    • 2001
  • This study analyzed the influence of paste fluidity and vibration time for fundamental properties of porous concrete. Results of this study were shown as follows; 1) Even if target void ratio is same, void ratio and compressive strength of porous concrete is different according to w/c, paste flow and vibration time. So, In case of target void ratio, we must consider the influence of w/c, paste flow, and vibration time. 2) Though w/c and vibration time are same, as paste flow increase, all void ratio, continuous void ratio, and compressive strength decrease and difference between upper and lower void ratio increase. 3) Though w/c and paste flow are same, as vibration time increase, all void ratio and continuous void ratio decrease and difference between upper and lower void ratio increase. Also, compressive strength increase by 10 seconds and decease after 10 seconds. 4) As types of superplasticizer is different, all void ratio, continuous void ratio, and compressive strength are different. So, we must give consideration to paste fluidity and vibration time in order that increase of strength of porous concrete and distribution of uniform void.

  • PDF

Strength Evaluation of Rectangular CFT Stub Columns varing with Concrete Strength and Width-to-Thickness Ratio of Steel Tubes (콘크리트 강도 및 강관 폭두께비에 따른 각형 CFT 단주의 내력평가)

  • Shim, Jong-Seok;Han, Duck-Jeon
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.11 no.2
    • /
    • pp.31-39
    • /
    • 2011
  • Concrete-filled steel tube(CFT) columns have become popular for building construction due to not only composite effect of steel tube and infilled concrete, but also more economical. The purpose of this paper is to propose the applicable boundary formula of width-to-thickness ratio for rectangular steel tube as using CFT column. A parametric study was performed taking width-to-thickness ratio of rectangular steel tube and compressive strength of concrete as the main parameter. The strength of concrete are selected to 30, 60, 90MPa. The non-linear analysis was adopted in order to take into account the effect of concrete strength. Finally, from the test and analysis results, the effect of increasing strength according to concrete strength and width-to-thickness of steel tube and plastic behavior of specimens were verified distinctly.

Strength Prediction and Optimum Design of Internally Ring-Stiffened Tubular X-and T-Joints (내부 환보강 X형 및 T형 관이음부의 강도산정과 최적설계)

  • Cho, Hyun-Man;Ryu, Yeon-Sun;Lee, Hyun-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.315-320
    • /
    • 2007
  • An effective reinforcement method for steel tubular joints having a large chord diameter is the use of internal ring stiffeners. This paper presents the results of a numerical study on the static strength of internally ring-stiffened tubular X- and T-joints subjected to brace axial compression loading. Nonlinear finite element analyses are used to compute the joint strength. The influence of geometrical parameters has been studied and the maximum reinforcement effect of a ring stiffener has been evaluated. A strength ratio is defined. by the ratio of ring-stiffened joint strength to unstiffened joint strength, and an equation for this strength ratio is derived by regression analysis. Design optimization for ring stiffener of tubular joints is carried out using metropolis genetic algorithm.

  • PDF

An Experimental Study on the Evaluation of Shear Performance of PVA Fiber Reinforced RC Deep Beam with High Strength Headed Rebar

  • Kim, Seunghun;Lee, Kyuseon;Lee, Yongtaeg
    • Architectural research
    • /
    • v.19 no.4
    • /
    • pp.109-115
    • /
    • 2017
  • This study is done to evaluate how existence of shear-span ratio and shear reinforcing bar effects on shear performance from through shear experiment using PVA fiber reinforced ferroconcrete building. Ratio of shear-span was set 1, 1.7, and arrangement of shear reinforcing bar was set with KCI2012 regulation. In result, subject with less shear-span ratio, and shear reinforcing bar with arrangement of bar shows high stiffness. Subjects with high shear-span ratio show large difference depending on existence of shear reinforcing bar. Therefore, theoretical shear strength followed by CEB code underestimates experimental shear strength by 43.9%. Shear strength of the deep beam with headed bars is more affected by the bearing strength of head than the bond strength of bar.

Flexural Design and Ductile Capacity of Reinforced High Strength Concrete Beams (고강도 철근 콘크리트 보의 휨 설계 및 연성능력)

  • 신성우;유석형;안종문;이광수
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.141-149
    • /
    • 1996
  • The reinforced high-strength-concrete beam subjected to flexure moment behaves more brittly than the moderate-strength-concrete beam reinforced with equal reinforcement ratio($\rho$/$\rho_b$). Test results show that when the concrete strength exceeds 830kg/$cm^2$, the maximum reinforcement ratio should be less than $0.6{\rho}_b$ for ductile behavior (${\rho}_b$=balanced steel ratio). The ratio of flexural strength between experimental results and analytical results with rectangular stress block decrease as the compressive strength of concrete increase. The shape of the compressive stress block distributed triangularly. because the ascending part of the stress-strain curve shows fairly linear response up to maximum stress in contrast to the nonlinear behavior of the medium and low strength specimens.

Assessment of Flexural Ductility in RC Beams with High-Strength Reinforcement (고장력 철근을 사용한 RC 보의 휨연성 평가)

  • 권순범;윤영수;이만섭;임철현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.897-902
    • /
    • 2001
  • Recently, structure performance is maximized by using high strength concrete. In design of structure, concrete need combination with reinforcement, but use of common strength reinforcement make member complex bar placement, so high strength concrete members require increased strength reinforcement. If common strength reinforcement replaced by equal tension area of high strength reinforcement, reinforcement ratio increase and brittle failure of member may occur by material change. So, adequate upper limit of strength ratio is required to affirm ductile behavior in application of high strength reinforcement. In this study, ductility behavior was analysed by factor of reinforcement ratio, strength of concrete and reinforcement. The result indicate that ductile failure is shown under 0.35 $\rho_{b}$ in any reinforcement strength of same section and high strength concrete of 800kg/$cm^{2}$ used commonly is compatible with reinforcement of 5500kg/$cm^{2}$.

  • PDF

Strut-tie model for two-span continuous RC deep beams

  • Chae, H.S.;Yun, Y.M.
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.357-380
    • /
    • 2015
  • In this study, a simple indeterminate strut-tie model which reflects complicated characteristics of the ultimate structural behavior of continuous reinforced concrete deep beams was proposed. In addition, the load distribution ratio, defined as the fraction of applied load transferred by a vertical tie of truss load transfer mechanism, was proposed to help structural designers perform the analysis and design of continuous reinforced concrete deep beams by using the strut-tie model approaches of current design codes. In the determination of the load distribution ratio, a concept of balanced shear reinforcement ratio requiring a simultaneous failure of inclined concrete strut and vertical steel tie was introduced to ensure the ductile shear failure of reinforced concrete deep beams, and the primary design variables including the shear span-to-effective depth ratio, flexural reinforcement ratio, and compressive strength of concrete were reflected upon. To verify the appropriateness of the present study, the ultimate strength of 58 continuous reinforced concrete deep beams tested to shear failure was evaluated by the ACI 318M-11's strut-tie model approach associated with the presented indeterminate strut-tie model and load distribution ratio. The ultimate strength of the continuous deep beams was also estimated by the experimental shear equations, conventional design codes that were based on experimental and theoretical shear strength models, and current strut-tie model design codes. The validity of the proposed strut-tie model and load distribution ratio was examined through the comparison of the strength analysis results classified according to the primary design variables. The present study associated with the indeterminate strut-tie model and load distribution ratio evaluated the ultimate strength of the continuous deep beams fairly well compared with those by other approaches. In addition, the present approach reflected the effects of the primary design variables on the ultimate strength of the continuous deep beams consistently and reasonably. The present study may provide an opportunity to help structural designers conduct the rational and practical strut-tie model design of continuous deep beams.

Using Recycled Aggregates in Sustainable Resource Circulation System Concrete for Environment Preservation (녹색자연환경 보존을 위한 지속가능한 자원순환시스템 콘크리트)

  • Lee, Young-Joo;Jang, Jung-Kwun;Kim, Yoon-Il;Lim, Chil-Soon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.57-61
    • /
    • 2010
  • In this study, many concrete specimens were tested to investigate the variations of strength characteristics of high-strength concrete due to amount of recycled coarse aggregates, and to investigate the effect of steel-fiber reinforcement on concrete using recycled coarse aggregates. Test results showed that all of the variations of compressive, tensile and flexural strength appeared in linear reduction according to icrease the amount of recycled coarse aggregates, and steel-fiber reinforcement of 0.75% volumn of concrete recovered completely spliting tensile strength and flexual strength and recovered greatly compressive strength of concrete using recycled coarse aggregates of 100% displacement. And test results showed that the shear strength falled rapidly at 30% of replacement ratio so far as 34% of strength reduction ratio, but after that it falled a little within 3% up to the replacement ratio 100%, and steel-fiber reinforcement of 0.75% of concrete volumn recovered completely the deteriorated shear strength, moreover improved the shear strength above 50% rather than that of concrete using natural coarse aggregates.

  • PDF

Study of thin film transition liquid crystal display (TFT-LCD) optical waste glass applied in early-high-strength controlled low strength materials

  • Wang, Her-Yung;Chen, Jyun-Sheng
    • Computers and Concrete
    • /
    • v.5 no.5
    • /
    • pp.491-501
    • /
    • 2008
  • The present study verifies compressive strength, ultrasonic pulse velocity, electrical resistance,permeable ratio, and shrinkage from waste glass controlled low strength materials (WGCLSM) and early-high-strength WGCSLM specimens, by replacing the sand with waste glass percentages of 0%, 10%,20%, and 30%. This study reveals that increasing amounts of waste LCD glass incorporated into concrete increases WGCLSM fluidity and reduces the setting time, resulting in good working properties. By increasing the glass to sand replacement ratio, the compressive strength decreases to achieve low-strength effects. Furthermore, the electrical resistance also rises as a result of increasing the glass to sand replacement ratio. Early-high-strength WGCSLM aged 28 days has twice the electrical resistance compared to general WGCSLM. Early-high-strength WGCSLM aged 7 days has a higher ultrasonic pulse velocity similar to WGCSLM aged 28 days. The variation of length with age of different compositions is all within the tolerance range of 0.025%. This study demonstrates that the proper composition ratio of waste LCD glass to sand in early-high-strength WGCSLM can be determined by using different amounts of glass-sand. A mechanism for LCD optical waste glass usage can be established to achieve industrial waste minimization, resource recycling, and economic security.

Development of Estimation of Model for Mechanical Properties of Steel Fiber Reinforced Concrete according to Aspect Ratio and Volume Fraction of Steel Fiber (강섬유의 형상비와 혼입률에 따른 강섬유 보강 콘크리트 보의 역학적 특성 추정 모형 개발)

  • Kwak, Kae-Hwan;Hwang, Hae-Sung;Sung, Bai-Kyung;Jang, Hwa-Sup
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.3
    • /
    • pp.85-94
    • /
    • 2006
  • Practially useful method of steel fiber for construction work is presented in this study. The most important purpose of this study is to develop a model which can predict mechanical behavior of the structure according to aspect ratio and volume fraction of steel fiber. Experiments on compressive strength, elastic modulus, and splitting strength were performed with self-made cylindrical specimens of variable aspect ratios and volume fractions. The experiment showed that compressive strength was not in direct proportion to volume fraction which doesn't seem to have great influence over compressive strength. However, splitting strength showed almost direct proportion to aspect ratio and volume fraction. Improvement of optimal efficiency was confirmed when the aspect ratio was 70. Experiments on flexural strength, fracture energy, and characteristic length were carried out with self-manufactured beams with notch. As a result, increases of flexural strength, fracture energy, and characteristic length according to increase of volume fraction tend to be prominent when aspect ratio is 70. The steel fiber improves concrete to be more ductile and tough. Moreover, regression analysis was the performed and predictable model was developed after determining variables. With comparison and analysis of suggested estimated values and measured data, reliance of the model was verified.