• Title/Summary/Keyword: strength prediction model

Search Result 781, Processing Time 0.031 seconds

Hadley Circulation Strength Change in Response to Global Warming: Statistics of Good Models

  • Son, Jun-Hyeok;Seo, Kyong-Hwan
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.665-672
    • /
    • 2016
  • In this study, we examine future changes in the Hadley cell (HC) strength using CMIP5 climate change simulations. The current study is an extension of a previous study by Seo et al. that used all 30 available models. Here, we select 18-23 well-performing models based on their significant internal sensitivity of the interannual HC strength variation to the latitudinal temperature gradient variation. The model projections along with simple scaling analysis show that the inter-model variability in the HC strength change is a result of the inter-model spread in the meridional temperature gradient across the subtropics for both DJF and JJA, not by the tropopause height or gross static stability change. The HC strength is expected to weaken significantly during DJF, while little change is expected in the JJA HC strength. Compared to the calculations with all model members, selected model statistics increase the linear correlation between the changes in HC strength and meridional temperature gradient by 13~23%, confirming the robust sensitivity of the HC strength to the meridional temperature gradient. Two scaling equations for the selected models predict changes in HC strength better than all-member predictions. In particular, the prediction improvement in DJF is as high as 30%. The simple scaling relations successfully predict both the ensemble-mean changes and model-to-model variations in the HC strength for both seasons.

An evolutionary system for the prediction of high performance concrete strength based on semantic genetic programming

  • Castelli, Mauro;Trujillo, Leonardo;Goncalves, Ivo;Popovic, Ales
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.651-658
    • /
    • 2017
  • High-performance concrete, besides aggregate, cement, and water, incorporates supplementary cementitious materials, such as fly ash and blast furnace slag, and chemical admixture, such as superplasticizer. Hence, it is a highly complex material and modeling its behavior represents a difficult task. This paper presents an evolutionary system for the prediction of high performance concrete strength. The proposed framework blends a recently developed version of genetic programming with a local search method. The resulting system enables us to build a model that produces an accurate estimation of the considered parameter. Experimental results show the suitability of the proposed system for the prediction of concrete strength. The proposed method produces a lower error with respect to the state-of-the art technique. The paper provides two contributions: from the point of view of the high performance concrete strength prediction, a system able to outperform existing state-of-the-art techniques is defined; from the machine learning perspective, this case study shows that including a local searcher in the geometric semantic genetic programming system can speed up the convergence of the search process.

Bond strength prediction of spliced GFRP bars in concrete beams using soft computing methods

  • Shahri, Saeed Farahi;Mousavi, Seyed Roohollah
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.305-317
    • /
    • 2021
  • The bond between the concrete and bar is a main factor affecting the performance of the reinforced concrete (RC) members, and since the steel corrosion reduces the bond strength, studying the bond behavior of concrete and GFRP bars is quite necessary. In this research, a database including 112 concrete beam test specimens reinforced with spliced GFRP bars in the splitting failure mode has been collected and used to estimate the concrete-GFRP bar bond strength. This paper aims to accurately estimate the bond strength of spliced GFRP bars in concrete beams by applying three soft computing models including multivariate adaptive regression spline (MARS), Kriging, and M5 model tree. Since the selection of regularization parameters greatly affects the fitting of MARS, Kriging, and M5 models, the regularization parameters have been so optimized as to maximize the training data convergence coefficient. Three hybrid model coupling soft computing methods and genetic algorithm is proposed to automatically perform the trial and error process for finding appropriate modeling regularization parameters. Results have shown that proposed models have significantly increased the prediction accuracy compared to previous models. The proposed MARS, Kriging, and M5 models have improved the convergence coefficient by about 65, 63 and 49%, respectively, compared to the best previous model.

Prediction of compressive strength of sustainable concrete using machine learning tools

  • Lokesh Choudhary;Vaishali Sahu;Archanaa Dongre;Aman Garg
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.137-145
    • /
    • 2024
  • The technique of experimentally determining concrete's compressive strength for a given mix design is time-consuming and difficult. The goal of the current work is to propose a best working predictive model based on different machine learning algorithms such as Gradient Boosting Machine (GBM), Stacked Ensemble (SE), Distributed Random Forest (DRF), Extremely Randomized Trees (XRT), Generalized Linear Model (GLM), and Deep Learning (DL) that can forecast the compressive strength of ternary geopolymer concrete mix without carrying out any experimental procedure. A geopolymer mix uses supplementary cementitious materials obtained as industrial by-products instead of cement. The input variables used for assessing the best machine learning algorithm not only include individual ingredient quantities, but molarity of the alkali activator and age of testing as well. Myriad statistical parameters used to measure the effectiveness of the models in forecasting the compressive strength of ternary geopolymer concrete mix, it has been found that GBM performs better than all other algorithms. A sensitivity analysis carried out towards the end of the study suggests that GBM model predicts results close to the experimental conditions with an accuracy between 95.6 % to 98.2 % for testing and training datasets.

Shear strength prediction of concrete-encased steel beams based on compatible truss-arch model

  • Xue, Yicong;Shang, Chongxin;Yang, Yong;Yu, Yunlong;Wang, Zhanjie
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.785-796
    • /
    • 2022
  • Concrete-encased steel (CES) beam, in which structural steel is encased in a reinforced concrete (RC) section, is widely applied in high-rise buildings as transfer beams due to its high load-carrying capacity, great stiffness, and good durability. However, these CES beams are prone to shear failure because of the low shear span-to-depth ratio and the heavy load. Due to the high load-carrying capacity and the brittle failure process of the shear failure, the accurate strength prediction of CES beams significantly influences the assessment of structural safety. In current design codes, design formulas for predicting the shear strength of CES beams are based on the so-called "superposition method". This method indicates that the shear strength of CES beams can be obtained by superposing the shear strengths of the RC part and the steel shape. Nevertheless, in some cases, this method yields errors on the unsafe side because the shear strengths of these two parts cannot be achieved simultaneously. This paper clarifies the conditions at which the superposition method does not hold true, and the shear strength of CES beams is investigated using a compatible truss-arch model. Considering the deformation compatibility between the steel shape and the RC part, the method to obtain the shear strength of CES beams is proposed. Finally, the proposed model is compared with other calculation methods from codes AISC 360 (USA, North America), Eurocode 4 (Europe), YB 9082 (China, Asia), JGJ 138 (China, Asia), and AS/NZS 2327 (Australia/New Zealand, Oceania) using the available test data consisting of 45 CES beams. The results indicate that the proposed model can predict the shear strength of CES beams with sufficient accuracy and safety. Without considering the deformation compatibility, the calculation methods from the codes AISC 360, Eurocode 4, YB 9082, JGJ 138, and AS/NZS 2327 lead to excessively conservative or unsafe predictions.

The prediction of compressive strength and non-destructive tests of sustainable concrete by using artificial neural networks

  • Tahwia, Ahmed M.;Heniegal, Ashraf;Elgamal, Mohamed S.;Tayeh, Bassam A.
    • Computers and Concrete
    • /
    • v.27 no.1
    • /
    • pp.21-28
    • /
    • 2021
  • The Artificial Neural Network (ANN) is a system, which is utilized for solving complicated problems by using nonlinear equations. This study aims to investigate compressive strength, rebound hammer number (RN), and ultrasonic pulse velocity (UPV) of sustainable concrete containing various amounts of fly ash, silica fume, and blast furnace slag (BFS). In this study, the artificial neural network technique connects a nonlinear phenomenon and the intrinsic properties of sustainable concrete, which establishes relationships between them in a model. To this end, a total of 645 data sets were collected for the concrete mixtures from previously published papers at different curing times and test ages at 3, 7, 28, 90, 180 days to propose a model of nine inputs and three outputs. The ANN model's statistical parameter R2 is 0.99 of the training, validation, and test steps, which showed that the proposed model provided good prediction of compressive strength, RN, and UPV of sustainable concrete with the addition of cement.

A new strength model for the high-performance fiber reinforced concrete

  • Ramadoss, P.;Nagamani, K.
    • Computers and Concrete
    • /
    • v.5 no.1
    • /
    • pp.21-36
    • /
    • 2008
  • Steel fiber reinforced concrete is increasingly used day by day in various structural applications. An extensive experimentation was carried out with w/cm ratio ranging from 0.25 to 0.40, and fiber content ranging from zero to1.5 percent by volume with an aspect ratio of 80 and silica fume replacement at 5%, 10% and 15%. The influence of steel fiber content in terms of fiber reinforcing index on the compressive strength of high-performance fiber reinforced concrete (HPFRC) with strength ranging from 45 85 MPa is presented. Based on the test results, equations are proposed using statistical methods to predict 28-day strength of HPFRC effecting the fiber addition in terms of fiber reinforcing index. A strength model proposed by modifying the mix design procedure, can utilize the optimum water content and efficiency factor of pozzolan. To examine the validity of the proposed strength model, the experimental results were compared with the values predicted by the model and the absolute variation obtained was within 5 percent.

Application of internet of things for structural assessment of concrete structures: Approach via experimental study

  • D. Jegatheeswaran;P. Ashokkumar
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • Assessment of the compressive strength of concrete plays a major role during formwork removal and in the prestressing process. In concrete, temperature changes occur due to hydration which is an influencing factor that decides the compressive strength of concrete. Many methods are available to find the compressive strength of concrete, but the maturity method has the advantage of prognosticating strength without destruction. The temperature-time factor is found using a LM35 temperature sensor through the IoT technique. An experimental investigation was carried out with 56 concrete cubes, where 35 cubes were for obtaining the compressive strength of concrete using a universal testing machine while 21 concrete cubes monitored concrete's temperature by embedding a temperature sensor in each grade of M25, M30, M35, and M40 concrete. The mathematical prediction model equation was developed based on the temperature-time factor during the early age compressive strength on the 1st, 2nd, 3rd and 7th days in the M25, M30, M35, and M40 grades of concrete with their temperature. The 14th, 21st and 28th day's compressive strength was predicted with the mathematical predicted equation and compared with conventional results which fall within a 2% difference. The compressive strength of concrete at any desired age (day) before reaching 28 days results in the discovery of the prediction coefficient. Comparative analysis of the results found by the predicted mathematical model show that, it was very close to the results of the conventional method.

Evaluation of concrete compressive strength based on an improved PSO-LSSVM model

  • Xue, Xinhua
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.505-511
    • /
    • 2018
  • This paper investigates the potential of a hybrid model which combines the least squares support vector machine (LSSVM) and an improved particle swarm optimization (IMPSO) techniques for prediction of concrete compressive strength. A modified PSO algorithm is employed in determining the optimal values of LSSVM parameters to improve the forecasting accuracy. Experimental data on concrete compressive strength in the literature were used to validate and evaluate the performance of the proposed IMPSO-LSSVM model. Further, predictions from five models (the IMPSO-LSSVM, PSO-LSSVM, genetic algorithm (GA) based LSSVM, back propagation (BP) neural network, and a statistical model) were compared with the experimental data. The results show that the proposed IMPSO-LSSVM model is a feasible and efficient tool for predicting the concrete compressive strength with high accuracy.

Shear Strength Model for FRP Shear-Reinforced Concrete Beams (FRP 전단 보강 콘크리트 보의 전단강도 모델)

  • Choi, Kyoung-Kyu;Kang, Su-Min;Shim, Woo-Chang
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.185-193
    • /
    • 2011
  • In the present study, a unified shear design method was developed to evaluate the shear strength of concrete beams with and without FRP shear reinforcement. The contributions of FRP and concrete on shear strength were defined separately. By comparing the current design method calculated results with the existing test results, it was found that Triantafillou model shows a reliable prediction of FRP effective strain and FRP shear strength contributions. The concrete shear strength contribution was defined by the strain-based shear strength model developed in the previous study. The shear strength of concrete compression zone was evaluated based on the material failure criteria of the concrete subjected to the compressive normal and shear stresses. The proposed strength model was verified by comparing its prediction results to prior test results. The comparisons showed that the proposed method accurately predicts the strengths of the test specimens for both FRP shear reinforced and unreinforced concrete beams.