• 제목/요약/키워드: strength performance

Search Result 6,934, Processing Time 0.03 seconds

Bending performance evaluation of high strength and seismic purpose reinforcing bars (고강도 및 내진용 철근의 굽힘성능 평가)

  • Kim, Hee-Dong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.492-498
    • /
    • 2017
  • This study examined the bending performance of high strength and seismic purpose reinforcing bars experimentally with various parameters. For the experimental approach on the bending performance, the specimens were prepared with parameters, such as steel grades, diameters of reinforcing bars, and bending angles of reinforcing bars. Tensile strength tests on the reinforcing bars, the bending tests and re-bending tests, and the second tensile strength tests on the re-bended reinforcing bars were conducted. According to the test results on high strength and seismic purpose reinforcing bars, defects did not appear when the yield strength of the reinforcing bar was 500 MPa or less and the diameter was D13 or less, even when the first bending process was performed with a $135^{\circ}$ bending angle and a $2d_b$ inner radius. The bending performance decreased asthe strength and diameter of the reinforcing bars was increased. In addition, there was no significant difference between the general reinforcing bars and seismic purpose-reinforcing bars.

Evaluation on Fire Resistance Performance of High Strength Concrete Containing Fibre (섬유혼입 고강도 콘크리트의 내화성능 평가)

  • Song, Young-Chan;Kim, Yong-Ro;Kim, Ook-Jong;Lee, Do-Bum
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.5
    • /
    • pp.129-135
    • /
    • 2010
  • The purpose of this research is to secure fundamental data on the application of fibre as a fire resistance method for more than 60 MPa high-strength concrete through an examination of mechanical properties and fire resistance performance. The results are as follows: 1) When there are less than 0.5~1.0kg/$m^3$ contents of PP and NY fibre for 60MPa and less high strength concrete, 1.0kg/$m^3$ contents of PP and NY fibre for less than 80MPa high strength concrete and 1.5kg/$m^3$ contents of NY fibre for more than 80MPa high strength concrete, the effect of fibre contents on workability and strength development is not significant. 2) Based on the result of a 3-hour fire resistance test for mock-up column, it is necessary to secure 50 mm of covering depth for the regulation of fire resistance performance of high strength concrete to the standards of The Ministry of Land, Transport and Maritime Affairs. 3) It is necessary to secure more than 400mm of column size for stable fire resistance performance.

Compressive Strength and Fire Resistance Performance of High Strength Concrete with Recycled Fiber Power from Fiber-Reinforced Plastics (재활용 FRP 미분말을 혼입한 고강도 콘크리트의 압축강도 및 내화성능)

  • Lee, Seung Hee;Park, Jong Won;Yoon, Koo Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.1
    • /
    • pp.46-51
    • /
    • 2014
  • Increasing of waste FRP (fiber reinforced plastics) has caused environmental problems. Recently, the technology of making fibers from waste FRP, which can be used to reinforce the concrete, was developed and the reinforced concretes were tested to study the structural performance. The purpose of this study is to investigate the effect of the powder, obtained together with F-fiber from the waste FRP, on the compressive strength and the fire resistance performance as in the high strength concrete. Strength tests show that the use of recycled FRP powder does not reduce the compressive strength of high strength concrete if the volume fraction of FRP powder is less than 0.7%. Electric furnace test results also show that the use of recycled FRP powder may increase the fire resistance performance of high strength concrete significantly.

Experimental Study on Performance of MgO-based Patching Materials for Rapid Repair of Concrete Pavement (콘크리트 포장의 급속 보수를 위한 산화마그네슘계열 단면복구재의 성능에 대한 실험적 연구)

  • Lee, Hyeongi;Ann, Kiyong;Sim, Jongsung
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.43-55
    • /
    • 2016
  • PURPOSES : This study aims to develop a repair material that can enhance pavement performance, inducing rapid traffic opening through early strength development and fast setting time by utilizing MgO-based patching materials for repairing road pavements. METHODS : To consider the applicability of MgO-based patching materials for repairing domestic road pavements, first, strength development and setting time of the materials were evaluated, based on MgO to $KH_2PO_4$ ratio, water to binder ratio, and addition ratio of retarder (Borax), by which the optimal mixture ratio of the developed material was obtained. To validate the performance of the developed material as a repair material, the strength(compressive strength and bonding strength) and durability (freezing, thawing, and chloride ion penetration resistance) was checked through testing, and its applicability was evaluated. RESULTS : The results showed that when an MgO-based patching material was used, the condensation time was reduced by 80%, and the compressive strength was enhanced by approximately 300%, as compared to existing cement-based repair materials. In addition, it was observed that the strength (compressive strength and bonding strength) and durability (freezing and thawing, and chloride ion penetration resistance) showed an excellent performance that satisfied the regulations. CONCLUSIONS : The results imply that an emergent repair/restoration could be covered by a rapid-hardening cement to meet the traffic limitation (i.e. the traffic restriction is only several hours for repair treatment). Furthermore, MgO-based patching materials can improve bonding strength and durability compared to existing repair materials.

Bond Properties of High Strength Steel Rebar in High Strength Steel Fiber Reinforced Concrete (강섬유 보강 고강도콘크리트와 고장력 철근의 부착 특성)

  • Won, Jong-Pil;Park, Chan-Gi;Jang, Chang-Il;Lee, Sang-Woo;Kim, Wan-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.631-637
    • /
    • 2007
  • This study was to evaluate bond properties between high-strength steel fiber reinforced concrete and high strength steel rebar. An direct bond test were performed to evaluate the bond performance of high strength steel rebar in two types of high-strength concrete with steel fiber volume fraction (0, 20, $40kg/m^3$). Also, relative bond strength was defined to determine the effect of steel fiber volume fraction on bond strength. The bond test results showed that the bond performance of high strength steel rebar and high strength concrete tended to increase with higher compressive strength and steel fiber volume fraction. Relative bond strength which performed to analyze effect of steel fiber volume fraction showed increased relative bond strength with increased steel fiber volume fraction.

An evolutionary system for the prediction of high performance concrete strength based on semantic genetic programming

  • Castelli, Mauro;Trujillo, Leonardo;Goncalves, Ivo;Popovic, Ales
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.651-658
    • /
    • 2017
  • High-performance concrete, besides aggregate, cement, and water, incorporates supplementary cementitious materials, such as fly ash and blast furnace slag, and chemical admixture, such as superplasticizer. Hence, it is a highly complex material and modeling its behavior represents a difficult task. This paper presents an evolutionary system for the prediction of high performance concrete strength. The proposed framework blends a recently developed version of genetic programming with a local search method. The resulting system enables us to build a model that produces an accurate estimation of the considered parameter. Experimental results show the suitability of the proposed system for the prediction of concrete strength. The proposed method produces a lower error with respect to the state-of-the art technique. The paper provides two contributions: from the point of view of the high performance concrete strength prediction, a system able to outperform existing state-of-the-art techniques is defined; from the machine learning perspective, this case study shows that including a local searcher in the geometric semantic genetic programming system can speed up the convergence of the search process.

Properties of Temperature History and Spatting Resistance of High Performance RC Column with Finishing Material (내화 마감재 종류에 따른 고성능 RC기둥의 폭열방지 및 온도이력 특성)

  • Heo Young-Sun;Kim Ki-Hoon;Lee Jin-Woo;Lee Bo-Hyeung;Lee Jae-Sam;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.37-40
    • /
    • 2005
  • High Performance Concrete(HPC) has been widely used in high-rise building. The HPC has several benefits including high strength, high fluidity and high durability. However. spatting is susceptible to occur in HPC and HPC also tends to be deteriorated in the side of fire resistance performance at fire. This paper focuses on the analysis of the temperature history and residual compressive strength with finishing material, in order to protect HPC from sudden-high-temperature, which is one of the main reason spatting occurs. Test results show that spalling occurs in all specimens. The most serious spalling took placed in HPC covering fire enduring spray-on material, whose covering thickness is 20mm but temperature history indicates that fire enduring spray effectively protected HPC from fire for more than 2hours. In addition, residual compressive strength ratio of HPC using fire enduring paint was more than $90\%$ of original strength, thus minimizing spatting and indicating significant fire resistance performance.

  • PDF

Performance of Seismic Retrofit According to the Stiffness and Strength Ratios of Steel Damper to Reinforced Concrete Frame (철근콘크리트 골조와 강재댐퍼의 강성비 및 내력비에 따른 내진보강 성능)

  • Baek, Eun Lim;Oh, Sang Hoon;Lee, Sang Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.171-180
    • /
    • 2013
  • The purpose of this study is to evaluate the effectiveness of the seismic retrofit performance for a reinforced concrete structure with steel damper. The nonlinear static analysis of the RC frame specimens with and without retrofit using the steel damper was conducted and the reliability of the analysis was verified by comparing the analysis and test results. Using this analysis model and method, additional nonlinear analysis was conducted considering varying stiffness and strength ratios between RC frame and steel damper and the failure mode of RC frame. As the result of the study, the total absorbed energy increased and the damage of RC frame was reduced as stiffness and strength ratios increased. The seismic retrofit performance, evaluated by means of the yield strength, increasing ratio of the absorbed energy and damage of the frame, increased linear proportionally with the increase of the strength ratio. In addition, the seismic retrofit performance was stable for stiffness ratios larger than 4~5. The energy absorption capacity of the frame governed by shear failure was better than that of the frame governed by flexure failure.

Effect of Glass Fiber-Reinforced Connection on the Horizontal Shear Strength of CLT Walls

  • JUNG, Hongju;SONG, Yojin;HONG, Soonil
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.685-695
    • /
    • 2020
  • The connection performance between cross-laminated timber (CLT) walls and support has the greatest effect on the horizontal shear strength. In this study, the horizontal shear performance of CLT walls with reinforced connection systems was evaluated. The reinforcements of metal bracket connections in the CLT connection system was made by attaching glass fiber-based reinforcement to the connection zone of a CLT core lamina. Three types of glass fiber-based reinforcement were used: glass fiber sheet (GS), glass fiber cloth (GT) and fiber cloth plastic (GTS). The horizontal shear strength of the fabricated wall specimens was compared and evaluated through monotonic and cyclic tests. The test results showed that the resistance performance of the reinforced CLT walls to a horizontal load based on a monotonic test did not improve significantly. The residual and yield strengths under the cyclic loading test were 38 and 18% higher, respectively, while the ductility ratio was 38% higher than that of the unreinforced CLT wall. The glass fiber-based reinforcement of the CLT connection showed the possibility of improving the horizontal shear strength performance under a cyclic load, and presented the research direction for the application of real-scale CLT walls.

The Effect of Visual Feedback Bicycle Training on Maximal Oxygen Uptake, Quadriceps Muscle Strength, and Running Performance in Healthy Young Adults

  • Kim, Hyeonguk;Lee, Seungwon;Choi, Wonjae
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.1
    • /
    • pp.58-65
    • /
    • 2022
  • Objective: The purpose of this study was to investigate the effect of visual feedback bicycle training on running performance, maximal oxygen uptake and quadriceps muscle strength. Design: A randomized controlled trial. Methods: Fifteen healthy adult men with no musculoskeletal or nervous system disease and capable of bicycle training were included. After the pretest, subjects were randomly assigned to visual feedback bicycle training group and general fixed bicycle training group. Both groups were trained two times a week for three weeks, each week for a fixed time and number of repetitions, followed by a six week washout period and then crossing the training method. visual feedback bicycle training provides visual feedback of heart rate in real time using a monitor and a heart rate meter during bicycle training, and general fixed bicycle training performed general bicycle training without visual feedback. After training, each item was measured using a wearable technology, gas analyzer, isokinetic equipment. Results: The results of this study was significant differences in running performance, maximal oxygen uptake and quadriceps muscle strength in visual feedback bicycle training group (p<0.05). The differential effect was found between visual feedback bicycle training group and general fixed bicycle training group in running performance, maximal oxygen uptake, and quadriceps muscle strength (p<0.05). Conclusions: This study suggested that that visual feedback bicycle training can be applied as a useful training method to improve running performance, maximal oxygen uptake and quadriceps muscle strength.