• 제목/요약/키워드: strength increase ratio

검색결과 1,457건 처리시간 0.026초

고강도 철근 콘크리트 깊은 보의 전단거동에 관한 실험적 연구 (An Experimental Study on the Shear Behavior of High Strength Concrete Deep Beam)

  • 함영삼;양근혁;이영호;정헌수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.897-902
    • /
    • 2001
  • The purpose of this experimental study is to investigate the shear behavior of high-strength concrete deep beam and to grasp the conservatism of ACI Building Code. Experimental results on 12 deep beams under two equal symmetrically placed point loads are reported. Main variables are vertical and horizontal web reinforcement and shear span-to-overall depth ratio. Test results indicated that web reinforcement dose not affect on formation of inclined cracks but shear span-to-overall depth ratio affect on inclined shear cracks and ultimate shear strength. Addition of vertical web reinforcement improves ultimate shear strength of H.S.C. deep beams that shear span-to-overall depth ratio is 1.0. Considerable increase in ultimate shear strength of H.S.C. deep beams with increasing horizontal web reinforcement that shear span-to-overall depth ratio is 0.5. Especially with increasing concrete strength($f_{ck}$) the ACI code is conservative in estamating the ultimate shear strength of deep beams.

  • PDF

FA 및 BS의 혼합비율 변화에 따른 3성분계 고강도 콘크리트의 기초적 특성 (Fundamental Characteristics of High Strength SCMs Concrete According to Mixing Ratio of FA and BS)

  • 김민상;문병룡;이재진;박성배;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 춘계 학술논문 발표대회
    • /
    • pp.154-155
    • /
    • 2017
  • With the recent development in construction industry, industrial by-products fly ash(FA) and blast furnace slag(BS) have been used in large quantities as an alternative to cement, as a solution for environmental problems and resource exhaustion. This study analyzed the basic characteristics according to the changes in replacement ratio and mixing ratio of FA and BS in high strength SCMs concrete, from which in turn it sought to find the optimal mixing ratio for high strength concrete The results showed that in unhardened concrete the more the replacement ratio and FA mixing ratio increases the slump flow will increase while amount of air decreases, and setting time is delayed. In hardened concrete the more the replacement ratio and FA mixing ratio increases the more the overall compression strength decreases, but until 28 days of material age the larger of the BS ratio displayed the best compression strength.

  • PDF

Compaction and strength behavior of lime-coir fiber treated Black Cotton soil

  • Ramesh, H.N.;Manoj Krishna, K.V.;Mamatha, H.V.
    • Geomechanics and Engineering
    • /
    • 제2권1호
    • /
    • pp.19-28
    • /
    • 2010
  • This paper describes the compaction and strength behavior of black cotton soil (BC soil) reinforced with coir fibers. Coir used in this study is processed fiber from the husk of coconuts. BC soil reinforced with coir fiber shows only marginal increase in the strength of soil, inhibiting its use for ground improvement. In order to further increase the strength of the soil-coir fiber combination, optimum percentage of 4% of lime is added. The effect of aspect ratio, percentage fiber on the behavior of the composite soil specimen with curing is isolated and studied. It is found that strength properties of optimum combination of BC soil-lime specimens reinforced with coir fibers is appreciably better than untreated BC soil or BC soil alone with coir fiber. Lime treatment in BC soil improves strength but it imparts brittleness in soil specimen. BC soil treated with 4% lime and reinforced with coir fiber shows ductility behavior before and after failure. An optimum fiber content of 1% (by weight) with aspect ratio of 20 for fiber was recommended for strengthening BC soil.

동결 온도와 재하속도에 따른 동결토의 일축압축 및 쪼갬인장 강도특성 (Experimental Study on Unconfined Compression Strength and Split Tensile Strength Properties in relation to Freezing Temperature and Loading Rate of Frozen Soil)

  • 서영교;최헌우
    • 한국해양공학회지
    • /
    • 제26권6호
    • /
    • pp.19-26
    • /
    • 2012
  • Recently the world has been suffering from difficulties related to the demand and supply of energy due to the democratic movements sweeping across the Middle East. Consequently, many have turned their attention to never-developed extreme regions such as the polar lands or deep sea, which contain many underground resources. This research investigated the strength and initial elastic modulus values of eternally frozen ground through a uniaxial compression test and indirect tensile test using frozen artificial soil specimens. To ensure accurate test results, a sandymud mixture of standard Jumunjin sand and kaolinite (20% in weight) was used for the specimens in these laboratory tests. Specimen were prepared by varying the water content ratio (7%, 15%, and 20%). Then, the variation in the strength value, depending on the water content, was observed. This research also established three kinds of environments under freezing temperatures of $-5^{\circ}C$, $-10^{\circ}C$, and $-15^{\circ}C$. Then, the variation in the strength value was observed, depending on the freezing environment. In addition, the tests divided the loading rate into 6 phases and observed the variation in the stress-strain ratio, depending on the loading rate. The test data showed that a lower freezing temperature resulted in a larger strength value. An increase in the ice content in the specimen with the increase in the water content ratio influenced the strength value of the specimen. A faster load rate had a greater influence on the uniaxial compression and indirect tensile strengths of a frozen specimen and produced a different strength engineering property through the initial tangential modulus of elasticity. Finally, the long-term strength under a constant water content ratio and freezing temperature was checked by producing stress-strain ratio curves depending on the loading rate.

플라이애시의 활성도지수 평가에 관한 기초적 연구 (Fundamental Study on Evaluation method of Activity Factor of Fly Ash)

  • 박상준
    • 한국건축시공학회지
    • /
    • 제8권5호
    • /
    • pp.59-65
    • /
    • 2008
  • In the evaluation method of KS on the activity factor of fly ash, same amount of cement should be replaced with fly ash. Therefore, contradictory effects on concrete strength exist, i. e. strength decease due to low content of cement and strength increase of strength due to filling-pore-function of fly ash. European Committee for Standardization (CEN) specifies the method 1 to 4. adding fly ash without reducing the content of cement, for the evaluation method on activity factor of fly ash. This study investigates the applicability of the method 2 of CEN to mix design of concrete. The followings are derived ; There is a key ratio of f)y ash mixing which enhances the incremental ratio of mixing water to improve fluidity of mortar. The incremental ratio of mixing water is maximized about 11% ratio of fly ash mixing. Compressive strength most slightly increases at that ratio of fly ash mixing. Activity factor of fly ash increases as water-cement ratio becomes low and contents of fly ash becomes high. Moreover, quality of fly ash and condition of mix design affect the applicable amount of fly ash and available range of water-cement ratio. However, this method has some problems for practical purpose because activity factors of fly ash for some cases are over 1.0. Further research should be conducted to develop more useful method of evaluating activity factor of fly ash.

부순모래를 사용한 CFT 구조용 고유동.고강도콘크리트의 물성 변화 (The Properties of High Flowing and Strength Concrete Utilizing Crushed Sand for CFT Structure)

  • 안남식;임홍철;임혜선
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2006년도 춘계학술논문 발표대회 제6권1호
    • /
    • pp.89-92
    • /
    • 2006
  • To investigate the properties of high flowing and high strength concrete with crushed sand and fly ash for CFT structure, many batches were performed by a trial-error method. In the experiment W/B was set up three levels as 0.25, 0.30 and 0.35. Also the variables of the experiment were a substitution ratio of fly ash, a blend ratio of crushed sand and the ages of specimens(3, 7, 28 days). The results of this study are summarized as the follows; 1) The effect a substitution ratio of fly ash on the compressive strength was not consistent with age. For twenty-eight day compressive strength, the best result was come out when cement was substituted by 10% of fly ash. 2) The decrease of the water binder ratio, the increase of compressive strength and elastic modulus. Also the relationship is very similar to the case of a normal concrete

  • PDF

연약점토의 함수비 변화가 고화처리토의 강도에 미치는 영향 (Effect of Water Content Change of Soft Clay on Strength of Solidification Agent Treated Soil)

  • 김광빈;이용안;이광준;김유성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.553-560
    • /
    • 2002
  • The improvement effect of soft ground is estimated by unconfined strength mainly. The unconfined strength of solidification agent treated soil is likely to vary with ununiformed mixing ratio and water content change of in-situ ground place by place. So, it is unreasonable to apply a solidification agent mixing ratio obtained from laboratory test results on all over the soft ground. In this study, it was analysed how the unconfined strength would be effected by the water content of soft ground. For this study, a series of unconfined compressive tests are peformed on various water content soil samples. The test results showed that the strength was fallen to 30∼80% by two times increase of water content approximately, This means that strength of solidification agent treated soil is influenced greatly by water content of raw soft ground and mixing ratio of solidification agent. It was suggested that the method how to decide the mixing ratio with soft ground water content.

  • PDF

산업부산물을 활용한 초고강도콘크리트의 제조 (Manufacture of Ultra High Strength Concrete using Industrial by-products)

  • 문한영;김병권
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권3호
    • /
    • pp.153-162
    • /
    • 2001
  • This paper presents the fundamental study on rational manufacture of Ultra High Strength(VHS) concrete using industrial by-products as like silica fume, slag and fly ash. In this study, we had tested various mixing cases to manufacture the UHS concrete(target compressive strength : over $1,000kgf/cm^2$) which is easily workable (target slump flow : $60{\pm}10cm$). The main variables are studied: 1) to find the optimum replacement ratio of mineral admixture. 2) to find a rational water-binder ratio and a proper binder content. 3) to find the method for reduction of slump loss. From the test results, it is concluded that the rational mix design can be made by using 40% slag, 10% silica fume. We found that compressive strength of UHS concrete increases according to decreasing W/B ratio but in W/B ratio 18~20%, the difference is vague and the compressive strength does not necessarily increase according to increasing binder content over 700kg.

  • PDF

Strength and stiffness characteristics of cement paste-slime mixtures for embedded piles

  • Yong-Hoon Byun;Mi Jeong Seo;WooJin Han;Sang Yeob Kim;Jong-Sub Lee
    • Computers and Concrete
    • /
    • 제31권4호
    • /
    • pp.359-370
    • /
    • 2023
  • Slime is produced by excavation during the installation of embedded piles, and it tends to mix with the cement paste injected into the pile shafts. The objective of this study is to investigate the strength and stiffness characteristics of cement pasteslime mixtures. Mixtures with different slime ratios are prepared and cured for 28 days. Uniaxial compression tests and elastic wave measurements are conducted to obtain the static and dynamic properties, respectively. The uniaxial compressive strengths and static elastic moduli of the mixtures are evaluated according to the curing period, slime ratio, and water-cement ratio. In addition, dynamic properties, e.g., the constrained, shear, and elastic moduli, are estimated from the compressional and shear wave velocities. The experimental results show that the static and dynamic properties increase under an increase in the curing period but decrease under an increase in the slime and water-cement ratios. The cement paste-slime mixtures show several exponential relationships between their static and dynamic properties, depending on the slime ratio. The bearing mechanisms of embedded piles can be better understood by examining the strength and stiffness characteristics of cement paste-slime mixtures.

부순모래를 사용한 고강도콘크리트의 유동성 및 강도특성에 관한 연구 (The Study on Fluidity and Strength Properties of High Strength Concrete Utilizing Crushed Sand)

  • 신홍철;박상준;안남식;이의학;강훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.383-386
    • /
    • 2005
  • This paper is to investigate the effect of W/B, blend ratio of crushed sand with sea sand on fluidity and strength properties of high strength concrete utilizing crushed sand. W/B set up 0.25, 0.30, 0.35 and the blend ratio of crushed sand with sea sand set up 0:100, 30:70, 50:50, 70:30, 100:0 The results of this study are summarized as the follows; 1) The increase of the blend rate of crushed sand, affected on the enhancement of flow, the increase of dosage of SP and water content, but the decrease S/a 2) Compressive strength is increased when crushed sand $30\~70\%$ was replaced with sea sand. 3) The optimal replacement percentage of crushed sand is $50\%$ with sea sand.

  • PDF