• Title/Summary/Keyword: strength decrease

Search Result 2,822, Processing Time 0.03 seconds

A Study on Decreasing Behavior of Strength & Elastic Parameters due to Water Infiltration in Rock Cores (I) (침투류에 의한 암석시료의 함수 저감거동 연구 (I))

  • Cho, Hong-Je;Moon, Jong-Kyu;Jeong, Il-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.9
    • /
    • pp.69-83
    • /
    • 2012
  • A study on strength decrease due to water contents through infiltration has been conducted with 9 rocks of high frequency in Korea. It has been proved that a strength decrease through infiltration has high dependence on rock strengths ranges while the species of rock have no impact. It has been found that the weaker the rocks are, the more sensitive the strength decreases are, and that water content of 0.5% corresponds to strength decrease of almost 50%. Another finding is that most rocks have a failure when water content is about one quarter~one half of its saturation. It has been shown that the weakening of rock strength due to water content results from leaching and the weakening of bonding strength of cementation materials.

Point defects and grain boundary effects on tensile strength of 3C-SiC studied by molecular dynamics simulations

  • Li, Yingying;Li, Yan;Xiao, Wei
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.769-775
    • /
    • 2019
  • The tensile strength of irradiated 3C-SiC, SiC with artificial point defects, SiC with symmetric tilt grain boundaries (GBs), irradiated SiC with GBs are investigated using molecular dynamics simulations at 300 K. For an irradiated SiC sample, the tensile strength decreases with the increase of irradiation dose. The Young's modulus decreases with the increase of irradiation dose which agrees well with experiment and simulation data. For artificial point defects, the designed point defects dramatically decrease the tensile strength of SiC at low concentration. Among the point defects studied in this work, the vacancies drop the strength the most seriously. SiC symmetric tilt GBs decrease the tensile strength of pure SiC. Under irradiated condition, the tensile strengths of all SiC samples with grain boundaries decrease and converge to certain value because the structures become amorphous and the grain boundaries disappear after high dose irradiation.

An Experimental Study on the Quality of Mortar Strength using the Quenched Blast-Furnace Slag (수재사 모르터의 강도특성에 관한 연구)

  • 임남기;이영도;양범석;김영회;최문식;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.207-214
    • /
    • 1997
  • Strength experimental on mortar which use Quenched Blast-Furnace Slag as aggregate was carried our for a fundamental study of application possibility of Quenched Blast-Furnace Slag as aggregate. It gives the following results. The strength of mortar use Quenched Blast-Furnace Slag is decrease as substitution rate is higher. As W/C rate increase, the strength decrease, but the strength decrease of fine aggregate rate 1:3 is lower than 1:2. The relation with fine aggregate is that the amount of fine aggregate is inversely proportional to strength. Th relation with age is proportional to strength and strength rate of going is lower than general mortar in 28 age the change of strength proportionately with W/C rate is that as W/C rate increases, th strength is drop ; it shows that it has same tendency as general mortar sand or crushed sand, but while W/C rate increase the strength is as high as general mortar. The reason can be assumed that water content per unit needed to Quenched Blast-Furance Slag is more than in case of sand. In addition, the relation with substitution rate is that the strength is the strongest at substitution rate 25% and 50% ; that is , sometimes it is higher than mortar which use sand 100%. In addition, long age strength of mortar which use Quenched Blast-Furnace Slag as aggregate is about to be studied in the last.

  • PDF

Effect of Handgrip Strength to Cognitive Impairment in Patients with Hypertension (고혈압 환자의 악력수준이 인지기능 저하에 미치는 영향)

  • Eun-Jung Bae;Il-Su Park
    • The Journal of Korean Society for School & Community Health Education
    • /
    • v.24 no.4
    • /
    • pp.27-37
    • /
    • 2023
  • Objectives: The purpose of this study was to investigate the effect of handgrip strength level on cognitive impairment in hypertensive patients. Methods: This study used the first to eighth year data of the Korean Longitudinal Study of Aging (KLoSA). Of the 10,254 respondents who participated in the basic survey, respondents were included that they were diagnosed with high blood pressure and had no cognitive impairment. The handgrip strength was based on the highest value of handgrip strength for both hands. Cognitive function using MMSE results and 23 points or less were defined as cognitive impairment. Cox models were conducted to estimate the hazard ratios (HRs) of cognitive impairment in relation to handgrip strength adjusting for covariates. Results: In the case of hypertension patients, the probability of cognitive decline decreased by 3.0% every time the maximum handgrip strength increased by 1 unit. In the analysis by age, under the age of 64 had a 1.8% decrease in the probability of cognitive decline whenever the maximum handgrip strength increased by 1 unit, and a 3.6% decrease in those over the age of 65. In the gender analysis, male had a 3.2% decrease in the probability of cognitive decline for every 1 unit increase in the maximum handgrip strength, and female had a 2.6% decrease. Conclusions: The results of this study are expected to be used as basic data for the development of interventions to prevent cognitive decline in hypertensive patients by identifying the effect of handgrip strength level on cognitive decline. It is also expected to be used as basic data for health education on the necessity of increasing muscle strength for hypertension patients in the community.

A Study on the Physical Properties of Concrete with Three-dimensional Fiber Application (입체 섬유 적용 콘크리트의 물리적 특성에 관한 연구)

  • Jae-Min Lee;Il-Young Jang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.519-525
    • /
    • 2024
  • In this paper, a study on the physical properties of mortar applying 3D Textile was conducted to compensate for the shortcomings of the existing concrete surface repair and reinforcement method. In the tests conducted to analyze the physical properties, compressive strength, flexural strength, and dynamic modulus measurement tests were conducted. As a result of the compressive strength test, as the number of surfaces to which the stereoscopic fiber was applied increased, the amount of displacement and strength reduction rate increased, and the flexural strength also increased as the number of surfaces to which the stereoscopic fiber was applied increased. In addition, it was confirmed that the use of stereoscopic fibers tended to decrease the dynamic modulus of elasticity. This result is a characteristic of the application of stereoscopic fibers, and it caused a decrease in compressive strength due to a decrease in the mortar content of the part to which the stereoscopic fib er was applied, and the high tensile force of the stereoscopic fiber is believed to have affected the increase in flexural strength.

A Study on the Waterproof Properties of Cement Mortar with the Addition Rate of the Inorganic Admixture and Zinc Stearate (무기질 혼화재 및 금속비누의 혼입률 변화에 따른 시멘트 모르터의 방수 특성에 관한 연구)

  • Choi, Hoon;Jiang, Yi-Long;Han, Min-Cheol;Ryu, Hyun-Ki;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.139-144
    • /
    • 1998
  • This study is intended to devolop the self waterproof agents for high performance concrete by analyzing the properties of fresh and hardened mortar with various addition ratios of the inorganic admixture and zinc stearate. As the results of the test, the flow and air content increase with the addition of expansive additives. When the replacement rate of silica fume increases, the flow decreases for the increased viscidity. And the flow and sir content decrease with the addition of zinc stearate. At hardened state, the compressive strength, tensile strength and flexual strength decrease with the addition of expansive additives and zinc stearate. With the increase of silica fume's replacement, they show a little decrease at early age and then increase gradually. Also, absorption and permeability show a steep decrease when zinc stearate is added, and a slack decrease with the replacement of silica fume.

  • PDF

Mechanical behavior of recycled fine aggregate concrete after high temperature

  • Liang, Jiong-Feng;Wang, En;He, Chun-Feng;Hu, Peng
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.343-348
    • /
    • 2018
  • This paper reports mechanical behavior of recycled fine aggregate concretes after high temperatures. It is found that compressive strength of recycled fine aggregate concretes decline significantly as the temperature rises. The elastic modulus of recycled fine aggregate concretes decreases with the increase in temperature, and the decrease is much quicker than the decrease in compressive strength. The split tensile strength of recycled fine aggregate concrete decrease as the temperature rises. Through the regression analysis, the relationship of the mechanical behavior with temperature are proposed, including the compressive behavior, elastic modulus and split tensile strength, which are fitting the test data.

Effect of Kinesio Taping on Pain Decrease and Functional Disability Improvement of Subjects with Lumbar Instability (키네시오 테이핑이 허리뼈 불안정성을 가진 대상자의 통증감소 및 기능장애 개선에 미치는 효과)

  • Cho, Hyoshin;Weon, Jonghyuc;Lee, Kwonho;Cha, Hyungyu
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.3
    • /
    • pp.71-81
    • /
    • 2020
  • Purpose : The purpose of this study is to investigate the instant effect of Kinesio taping on pain decrease and improvement of functional disorder of the subjects who have lumbar instability. Methods : A total of 20 patients (13 men and 7 women) who have lumbar instability were chosen as the subjects. The experiment was conducted by assigning the subjects into Kinesio taping group and placebo taping group. A visual analog scale (VAS) was used to measure back pain and Biering-Sorensen test was applied to measure the muscle endurance of back extensor muscles. A digital dynamometer was used to test the isomeric contraction strength of lumbar extensor muscle. The subject performed single-leg stance and double-leg stance task and their static balancing ability was measured by a testing device that captures the static balancing ability. Results : In a within-group comparison, Kinesio taping group showed a significant decrease of VAS (p<.05) and a significant increase of endurance and strength of lumbar extensor muscle (p<.05). In Kinesio taping group, the shift distance in anterior-posterior sway and medial-lateral sway during the double-leg stance significantly decrease (p<.05). The shift distance in anterior-posterior sway and medial-lateral sway also significantly decreased during the single-leg stance (p<.05). Placebo taping group showed a significant decrease of visual analog scale (p<.05). In a between-group comparison, Kinesio taping group showed a significantly larger decrease of VAS (p<.05), significant larger increase of muscle endurance and muscle strength (p<.05), and significant larger decrease of anterior-posterior sway in the double-leg stance (p<.05), compared to placebo taping group. Conclusion : Application of Kinesio taping to the subjects with lumbar instability produced positive effect of reducing pain, increasing muscle strength and endurance, and improving static balancing ability.

Theoretical Study of Effective Resistance Exercise for Sarcopenia

  • Lee Sang Hyun;Jeong Hwan Jong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.187-195
    • /
    • 2023
  • Sarcopenia is a phenomenon in which muscle function, including muscle strength, deteriorates as muscle mass decreases in the process of increasing age. The diagnosis of sarcopenia utilizes total muscle mass and limb muscle mass, and limb muscle mass is expressed as height squared, body weight, and BMI. Each divided value is used as an index, mainly less than 7.23 kg/m2 for men and less than 5.67 kg/m2 for women. Grip strength, standing up from a chair, and walking speed were mainly used as physical function factors, and grip strength less than 27 kg for men and less than 16 kg for women were used as indicators. The limb muscle mass showed a decreasing trend after peaking in the mid-20s in men, and maintaining a gradual peak in women from the mid-20s to the mid-40s, showing a more rapid decline in men. The rate of decrease in muscle mass and strength continues to increase after the age of 20, and muscle strength rapidly decreases after the age of 80. In Korean men, total muscle mass and limb muscle mass show a decreasing trend from the mid-30s, and a more markedly rapid decrease from the age of 60. For women, it remains constant from the age of 30 to the age of 50, then gradually decreases after the mid-50s, and shows a rather rapid decrease after the mid-70s, showing a more gradual decrease than that of men. Men show a sharp decrease from the mid-40s when limb muscle mass is divided by height squared, and women show a marked decrease after 70 years old when limb muscle mass is divided by height squared. Exercise for the prevention and treatment of sarcopenia results in an increase in protein assimilation hormone, an increase in antioxidant activity, a decrease in inflammation, an increase in muscle insulin sensitivity, and an increase in protein synthesis. Resistance exercise is basically used, and aerobic exercise and equilibrium A combination of exercises is effective. In addition, for a more efficient effect of sarcopenia through resistance exercise, it is necessary to supplement nutrition including protein.

Physical Properties and Drying Shrinkage of Concrete Using Shrinkage Reducing Admixtures (수축저감제를 사용한 콘크리트의 물성변화 및 건조수축 저감 특성)

  • Han, Cheon-Goo;Song, Seung-Heon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.3 s.17
    • /
    • pp.101-107
    • /
    • 2005
  • This paper reports the contribution of Shrinkage reducing admixture(SRA) to the physical properties and drying shrinkage of concrete. Dosage of SRA is varied with. For the properties of fresh concrete, an increase in SRA dosage results in a decrease in fluidity and air content, while setting time is accelerated. For the properties of hardened concrete, the incorporation of mineral admixture leads to a decrease in compressive strength at early age, whereas after 28 days, the incorporation of fly ash(FA) and blast furnace slag(BS) has greater compressive strength than conventional concrete without admixture. The use of SRA results in a decrease in compressive strength. The incorporation of SRA with every $1\%$ increase causes the decrease of compressive strength by as much as $3\~6\%$. For drying shrinkage properties, the incorporation of FA and BS reduces drying shrinkage slightly. The use of SRA also decreases drying shrinkage. Every $1\%$ of increase in SRA dosage can reduce drying shrinkage by as much as $10\~15\%$