• Title/Summary/Keyword: strength at short

Search Result 366, Processing Time 0.024 seconds

Study of Partial Discharge Influence on AC Breakdown Strength of Laminated Ploypropylene Paper(PPLP) at Liquid Nitrogen (액체 질소에서의 반합성지 AC 파괴 강도에 미치는 부분 방전의 영향)

  • 안드레프;김수연;이인호;김도운;신두성;김상현
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.105-109
    • /
    • 2002
  • The short-term AC breakdown strength of laminated polypropylene insulating Paper (PPLP) has been studied for cold dielectric of high temperature superconductivity power cables. The design and operating conditions of the electrode system for studying of short-term breakdown strength of one-layer and multi-layer PPLP samples are discussed in liquid nitrogen(LN2) state. The influence of various operating factors (geometry and dimension of electrodes, speed of tested voltage, thickness of test sample) on the value of short-term AC breakdown strength at cryogenic temperature has been established.

Experimental behavior and shear bearing capacity calculation of RC columns with a vertical splitting failure

  • Wang, Peng;Shi, Qing X.;Wang, Qiu W.;Tao, Yi
    • Earthquakes and Structures
    • /
    • v.9 no.6
    • /
    • pp.1233-1250
    • /
    • 2015
  • The behavior of reinforced concrete (RC) columns made from high strength materials was investigated experimentally. Six high-strength concrete specimen columns (1:4 scale), which included three with high-strength transverse reinforcing bars and three with normal-strength transverse reinforcement, were tested under double curvature bending load. The effects of yielding strength and ratio of transverse reinforcement on the cracking patterns, hysteretic response, shear strength, ductility, strength reduction, energy dissipation and strain of reinforcement were studied. The test results indicated that all specimens failed in splitting failure, and specimens with high-strength transverse reinforcement exhibited better seismic performance than those with normal-strength transverse reinforcement. It also demonstrated that the strength of high-strength lateral reinforcing bars was fully utilized at the ultimate displacements. Shear strength formula of short concrete columns, which experienced a splitting failure, was proposed based on the Chinese concrete code. To enhance the applicability of the model, it was corroborated with 47 short concrete columns selected from the literature available. The results indicated that, the proposed method can give better predictions of shear strength for short columns that experienced a splitting failure than other shear strength models of ACI 318 and Chinese concrete codes.

Shear Strength and Permeability Characteristics of Soil Body Reinforced with Linear and Planar Reinforcing Materials (선형보강재와 평면보강재를 적용한 토체의 전단강도 및 투수특성)

  • 차경섭;장병욱;우철웅;박영곤
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.6
    • /
    • pp.162-171
    • /
    • 2003
  • Traditional methods of earth reinforcement consist of introducing strips, fabrics, or grids into an earth mass. Recently, discrete fibers are simply added and mixed with the soil, much the same as cement, lime or other additives. The advantages of randomly distributed fibers is the maintenance of strength isotropy, low decrease in post-peak shear strength and high stability at failure. In this study, new composite reinforcement structures which consist of geotextile and randomly distributed discrete fibers were examined their engineering properties, such as shear strength of the composite reinforced soil and permeability of short fiber reinforced soil. The increments of shear strength of composite reinforced soils were the sum of increments by fiber and woven geotextile, respectively. The permeability of short fiber reinforced soil was increased with fiber mixing ratio.

Muscle Strength Following Short Term Isometric And Isotonic Exercise (단기간의 등척성 운동과 등장성 운동후 근력의 변화)

  • Shin, Sang-Yong;Jung, Yu-Hoe;Lee, Kook-Heang;Kang, Jung-Koo
    • Journal of Korean Physical Therapy Science
    • /
    • v.6 no.4
    • /
    • pp.167-171
    • /
    • 1999
  • Objective: To investigate muscle strength after short term isotonic and isometric exercise. Method: Twenty two healthy men and women were randomly designed isometric and isotonic exercises. Each participant was asked to perform 10 sessions of isometric and isotonic exercises. The assessment measured pre and post 10 sessions exercises by Cybex 340. Result: Isometric exercise significantly increased by $60^{\circ}$/sec and isotonic exercise significantly increased by $120^{\circ}$/sec, $180^{\circ}$/sec. Isometric exercise and isotonic exercise increased by all speeds. Most increased at $120^{\circ}$/sec, $180^{\circ}$/sec by isometric exercise and $60^{\circ}$/see by isotonic exercise but not significantly. Conclusion: Short term isotonic and isometric exercise increase muscle strength. Even if the exercise session is short term, the sessions increase muscle strength.

  • PDF

Relationships between Gross Motor Capacity and Neuromusculoskeletal Function in Children with Cerebral Palsy after Short-Term Intensive Therapy

  • Kim, Ki-Jeon
    • The Journal of Korean Physical Therapy
    • /
    • v.30 no.3
    • /
    • pp.90-95
    • /
    • 2018
  • Purpose: To investigate the relationship between gross motor capacity and neuromuscular function in children with cerebral palsy (CP) through a short-term intensive intervention. Methods: Twenty-four children younger than 6 years of age (17 boys, 7 girls, mean $age{\pm}standard$ deviation, $42.71{\pm}14.43months$) who were diagnosed with CP underwent short-term intensive treatment for 8 weeks. An evaluation of gross motor function capacity using the gross motor function measure (GMFM-66 and GMFM-88) was performed to measure muscle strength, selective motor control (SMC), and spasticity, factors related to neuromusculoskeletal function. Changes in spasticity, strength, range of motion, selective motor function, and exercise intensity scores were evaluated in terms of the gross motor function classification system (GMFCS) and ages. Results: The GMFM-88 and GMFM-66 scores significantly increased, by $4.32{\pm}4.04$ and $2.41{\pm}1.51%$, respectively, following the 8-week intervention. The change in the GMFM-66 score did not reflect a statistically significant difference in the GMFCS level. However, there was a statistically significant difference in the GMFM-88 score change in individuals at GMFCS Level III, the strength and spasticity of subjects at GMFCS Levels I-II did not significantly differ (p<0.05). The changes in the GMFM-66 scores for strength, SMC, range of motion (ROM), and spasticity significantly differed according to age (p<0.05) in children aged 36 months and older. Overall, there was a statistically significant difference in strength, SMC, and spasticity (p<0.05) before and after intensive short-term treatment. Conclusion: The 8-week short-term intensive care intervention improved the motor function score of study participants, emphasizing the need for early intervention and additional research in this area.

Behaviour of high strength concrete-filled short steel tubes under sustained loading

  • Younas, Saad;Li, Dongxu;Hamed, Ehab;Uy, Brian
    • Steel and Composite Structures
    • /
    • v.39 no.2
    • /
    • pp.159-170
    • /
    • 2021
  • Concrete filled steel tubes (CFSTs) are extensively used in a variety of structures due to their structural and economic advantages over other types of structures. Considerable research has been conducted with regards to their short-term behaviour, and very limited studies have focused on their long-term behaviour. In this study, a series of tests were carried out on high strength squat (short) CFSTs and concrete cylinders under controlled conditions of temperature and humidity to better understand their time dependent behaviour. A number of parameters were investigated including the influence of steel and concrete bond, confinement, level of sustained load and sizes of specimens. The results revealed that creep strains increased by more than 40% if there was no bonding between steel tube and concrete core. As expected, creep and shrinkage of concrete inside a steel tube were significantly less than those developed in exposed concrete. At the end of a creep period of six months, all the specimens were tested to failure to observe the influence of sustained loads on the ultimate strength. It was found that creep does not have a major effect on the strength of short CFSTs in the specific experimental study conducted here, which was less than 2.5%.

Practicability Strength Assessment of a Bone Metallic Plate at the Femur Fixation (대퇴골(Femur)고정용 골 금속판 제작 및 강도 평가)

  • Kim, Jeong-Lae;Ahn, Chang-Sik;Seo, Byoung-Do
    • Journal of the Ergonomics Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.83-89
    • /
    • 2008
  • Study was developed the metallic plate for fixation in the femur fracture and plates has a firm place in fracture treatment. This plates can be stabilized for fracture fixation as well as biological and dynamical device. The device's designation and sizing has a optimization with bending structural stiffness and strength, known meaning that is reliable regardless of the plate by the short type and long type. The bending strength of the curved metallic long plate has to evaluate a 11,000N and the bending strength of the curved metallic short plate has to evaluate a 6,525N. This see the X-ray image of bending angle made certain of 15$^{\circ}$ at number 2 and same 82.87$^{\circ}$ at number 2, 4, 5, 7, 8, 9, 10 by outside angle, and confirmed 25.26$^{\circ}$ at number 3, 3.68$^{\circ}$ at number 6, 15.64$^{\circ}$ at number 9 by inside angle. This study shows that keep up the metallic plate for fixation in the femur fracture through X-ray Image and the device can be used to support Revision case of Hip Implant and to use a case of Hip screw compression of Hip Neck Fracture. Short plate have a wrapping of femur and long plate have to preserve a pole of femur.

Strength Optimization of Ventilating Container(II)-Finite Element Analysis (통기성 상자 구조물의 강도적 최적화 연구(II)-유한요소해석)

  • Park, Jong-Min
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.7 no.2
    • /
    • pp.25-30
    • /
    • 2001
  • Corrugated board is composed of cellulose fibers which are arranged with the same direction as the board manufactured. The direction is classified with machine direction (MD) and cross-machine direction (CD). Therefore, corrugated board is orthotropic material that has totally different strength properties at each direction and especially, at machine direction, the mechanical properties of fiberboard is superior. The compression strength of the corrugated fiberboard boxes is very important information to the manufacturers and the end users. This study was carried out to design the optimum pattern, size, and location of ventilating hole for ventilating container through the finite element analysis. The optimum pattern and location of ventilating and hand hole were vertical oblong, a short distance to the right and left from the center of panel, and center or a short distance to the top of both sides, respectively. We identified the effect on both stress dispersion and stress level from the analysis of redisigned hand hole.

  • PDF

The Influence of Interphase Condition on Mechanical Properties of Short-Fiber Reinforced Rubber (계면상 조건이 단섬유 강화고무의 기계적 성질에 미치는 영향)

  • Ryu, Sang-Yeol;Lee, Dong-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.625-633
    • /
    • 2000
  • The mechanical and curing properties of short nylon66 fiber reinforced Chloroprene rubber have been investigated as functions of interphase conditions and fiber content. The tensile strength exhibits a dilution effect at a low fiber content in each interphase. It is found that the interphase conditions have an important affect on the dilution ratio and critical fiber content. Double coatings of bonding agent 402 and rubber solution become the best interphase model in this study. The yield strength, tensile modulus, tear strength and fracture toughness at rupture, Jr are significantly improved due to fiber concentration.

A Study on Initial Strength of Sn-Pb Solder Joint (Sn-Pb 솔더 접합부의 초기 강도에 관한 연구)

  • 신영의;정승부
    • Journal of Welding and Joining
    • /
    • v.14 no.3
    • /
    • pp.86-92
    • /
    • 1996
  • This paper presents the investigations on the initial strength and its variation of Sn-Pb solder joint using different lead frames, such as are 42 alloy lead and Cu alloy lead. As the result of the lack of initial strength at solder joints, whose pitch is from 0.3 to 0.4mm, short circuit often occured at the solder joint by thermal shock or external impact. Therefore, in this paper investigations were performed on the initial strength and its variation of Sn-Pb solder joint as well as fractured mode with using different lead frames.

  • PDF