• 제목/요약/키워드: strength and stiffness degradation

검색결과 204건 처리시간 0.024초

지상환경하에서 복합재료의 물성저하를 고려한 한국형 틸팅열차 하이브리드 차체 구조물의 정적안정성 평가 (Evaluation of Static Stability of Hybrid Carbody Structures of Korean Tilting Train eXpress Including Degradation Effects of Composite Materials under Ground Environments)

  • 신광복;한성호
    • 대한기계학회논문집A
    • /
    • 제28권6호
    • /
    • pp.807-815
    • /
    • 2004
  • In order to evaluate the static stability of hybrid carbody structures of Korean Tilting Train eXpress(TTX) caused by degradation of composites under ground environments, T300/AD6005 graphite/epoxy composite specimens were exposed to accelerated environmental conditions including ultraviolet radiation, temperature and moisture fer 2000 hours. It was found that the stiffness and strength of composites after aging were lower than those of unexposed specimens, and decreased as the aging time increases. The values of the degraded properties were used in the static analysis to check the static stability of hybrid carbody structures caused by environmental degradation of composites. The results shown that the structural stability of hybrid carbody structures was affected by the degradation of composites after exposure to accelerated aging environments.

직접단순전단시험을 이용한 동적이력 후 세립토의 강도 및 강성 예측법 (An Estimating Method for Post-cyclic Strength and Stiffness of Eine-grained Soils in Direct Simple Shear Tests)

  • Song, Byung-Woong;Yasuhara, KaBuya;Murakami, Satoshi
    • 한국지반공학회논문집
    • /
    • 제20권2호
    • /
    • pp.15-26
    • /
    • 2004
  • 반복삼축시험에 의한 반복하중 후 강도 및 강성의 예측법을 이용하여, 세립토에 대해서 직접단순 전단시험에서도 그 방법의 사용 가능성을 확인하여 보았다. 사용한 흙은 실트질 점토, 소성 실트와 비소성 실트이다. 반복삼축시험을 통해서 얻은 강도 및 강성 예측법을 직접단순 전단시험에 맞게 수정하여 시험 결과와 비교하였다. 특히, 세립토의 소성지수와 초기전단응력(ISSS)의 영향이 강조되었다. 연구결과는 (i) 세립토의 액상화강도비는 소성지수의 감소와 초기전단응력의 증가에 따라 감소한다. (ii)등가강성과 전단변형률의 관계에 미치는 소성지수와 초기전단응력의 영향은 그리 크지 않다. (iii) 정규화한 과잉간극수압의 증가에 따른 강도비의 저하는 세립토의 소성지수가 증가할수록 느리다. (iv) 활성도가 큰 소성실트의 강성은 과잉간극 수압의 증가에 따라 급속히 감소한다. (v) 반복삼축시험 결과를 이용한 반복하중후 강도 및 강성의 예측법을 이용하여 직접단순 전단시험 결과에 수정한 방법은 시험결과와 잘 어울리는 것으로 나타났다.

Effect of the crude oil environment on the electrical conductivity of the epoxy nanocomposites

  • Seyed Morteza Razavi;Soroush Azhdari;Fathollah Taheri-Behrooz
    • Advances in nano research
    • /
    • 제15권4호
    • /
    • pp.285-294
    • /
    • 2023
  • This study is aimed to investigate the electrically conductive properties of epoxy nanocomposites exposed to an acidic environment under various mechanical loads. For simultaneous assessment of the acidic environment and mechanical load on the electrical conductivity of the samples, the samples with and without carbon nanotubes were exposed to the acidic environment under three different loading conditions for 20 days. Then, the aged samples' strength and flexural stiffness degradation under crude oil and bending stress were measured using a three-point flexural test. The aged samples in the acidic environment and under 80 percent of their intact ultimate strength revealed a 9% and 26% reduction of their electrical conductivity for samples with and without CNTs, respectively. The presence of nanoparticles declined flexural stiffness by about 16.39%. Scanning electron microscopy (SEM) images of the specimen were used to evaluate the dispersion quality of CNTs. The results of this study can be exploited in constructing conductive composite electrodes to be used in petroleum environments such as crude oil electrostatic tanks.

Effect of nonlocal-nonsingular Fractional Moore-Gibson-Thompson theory in semiconductor cylinder

  • Iqbal Kaur;Kulvinder Singh
    • Advances in nano research
    • /
    • 제15권4호
    • /
    • pp.305-313
    • /
    • 2023
  • This study is aimed to investigate the electrically conductive properties of epoxy nanocomposites exposed to an acidic environment under various mechanical loads. For simultaneous assessment of the acidic environment and mechanical load on the electrical conductivity of the samples, the samples with and without carbon nanotubes were exposed to the acidic environment under three different loading conditions for 20 days. Then, the aged samples' strength and flexural stiffness degradation under crude oil and bending stress were measured using a three-point flexural test. The aged samples in the acidic environment and under 80 percent of their intact ultimate strength revealed a 9% and 26% reduction of their electrical conductivity for samples with and without CNTs, respectively. The presence of nanoparticles declined flexural stiffness by about 16.39%. Scanning electron microscopy (SEM) images of the specimen were used to evaluate the dispersion quality of CNTs. The results of this study can be exploited in constructing conductive composite electrodes to be used in petroleum environments such as crude oil electrostatic tanks.

강성 및 강도저하 모델이 반응수정계수 산정에 미치는 영향 평가 (Effect of Stiffness and Strength Degrading Model on Evaluating the Response Modification Factor)

  • 오영훈;한상환;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.25-32
    • /
    • 1998
  • Most recent seismic design codes include Response Modification Factor(RMF) for determining equivalent lateral forces. The RMF is used to reduce the linear elastic design spectrum to account for the energy dissipation capacity, overstrength and damping of the structure. In this study the RMF is defined as the ratio of the absolute maximum linear elastic base shear to the absolute maximum nonlinear base shear of a structure subject to the same earthquake accelerogram. This study investigates the effect of hysteretic model, as well as target ductility ratio and natural period on duct based RMF using nonlinear dynamic analyses of the SDOF systems. Special emphasis is given to the effects of the hysteretic characteristics such as strength deterioration and stiffness degradation. Results indicate that RMFs are dependent on ductility, period and hysteretic model.

  • PDF

Large-scale testing and numerical study on an innovative dovetail UHPC joint subjected to negative moment

  • Zhang, Qifeng;Feng, Yan;Cheng, Zhao;Jiao, Yang;Cheng, Hang;Wang, Jingquan;Qi, Jianan
    • Computers and Concrete
    • /
    • 제30권3호
    • /
    • pp.175-183
    • /
    • 2022
  • To study the working mechanism and size effect of an innovative dovetail UHPC joint originated from the 5th Nanjing Yangtze River Bridge, a large-scale testing subject to negative bending moment was conducted and compared with the previous scaled specimens. The static responses, i.e., the crack pattern, failure mode, ductility and stiffness degradation were analyzed. It was found that the scaled specimens presented similar working stages and working mechanism with the large-scale ones. However, the post-cracking ductility and relative stiffness degradation all decrease with the enlarged length/scale, apart from the relative stiffness after flexural cracking. The slab stiffness at the flexural cracking stage is 90% of the initial stiffness while only 24% of the initial stiffness reserved in the ultimate stage. Finite element model (FEM) was established and compared with the experiments to verify its effectiveness in exploring the working mechanism of the innovative joint. Based on this effective method, a series of FEMs were established to further study the influence of material strength, pre-stressing level and ratio of reinforcement on its deflection-load relationship. It is found that the ratio of reinforcement can significantly improve its load-carrying capacity among the three major-influenced factors.

비내진 상세를 가진 저층 R.C조의 외부접합부 거동 (Exterior Joint Behavior of Low-Rise Reinforced Concrete Frame with Non-Seismic Detail)

  • 김영문;기찬호;장준호;이세웅;김상대
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.481-486
    • /
    • 1998
  • In this paper, elastic and inelastic behavior of exterior joint of moment-resisting R.C frame with non-seismic detail subjected to reversed cyclic lateral load such as earthquake excitations was investigated. 1/2-scals subassemblage exterior beam-column joint including slab was manufactured based on similitude law. Then, pseudo static test under the displacement control was performed. The results of 1)crack pattern and failure mode, 2)degradation stiffness and strength, energy dissipation capacity from load-displacement hysteresis curve, 3)strain of steel were analysed.

  • PDF

Seismic behavior of full-scale square concrete filled steel tubular columns under high and varied axial compressions

  • Phan, Hao D.;Lin, Ker-Chun
    • Earthquakes and Structures
    • /
    • 제18권6호
    • /
    • pp.677-689
    • /
    • 2020
  • A building structural system of moment resisting frame (MRF) with concrete filled steel tubular (CFST) columns and wide flange H beams, is one of the most conveniently constructed structural systems. However, there were few studies on evaluating seismic performance of full-scale CFST columns under high axial compression. In addition, some existing famous design codes propose various limits of width-to-thickness ratio (B/t) for steel tubes of the ductile CFST composite members. This study was intended to investigate the seismic behavior of CFST columns under high axial load compression. Four full-scale square CFST column specimens with a B/t of 42 were carried out that were subjected to horizontal cyclic-reversal loads combined with constantly light, medium and high axial loads and with a linearly varied axial load, respectively. Test results revealed that shear strength and deformation capacity of the columns significantly decreased when the axial compression exceeded 0.35 times the nominal compression strength of a CFST column, P0. It was obvious that the higher the axial compression, the lower both the shear strength and deformation capacities were, and the earlier and faster the shear strength degradation occurred. It was found as well that higher axial compressions resulted in larger initial lateral stiffness and faster degradation of post-yield lateral stiffness. Meanwhile, the lower axial compressions led to better energy dissipation capacities with larger cumulative energy. Moreover, the study implied that under axial compressions greater than 0.35P0, the CFST column specimens with B/t limits recommended by AISC 360 (2016), ACI 318 (2014), AIJ (2008) and EC4 (2004) codes do not provide ultimate interstory drift ratio of more than 3% radian, and only the limit in ACI 318 (2014) code satisfies this requirement when axial compression does not exceed 0.35P0.

재료 비선형과 연속체 손상역학을 고려한 복합 적층판의 강도 예측 (Strength Prediction on Composite Laminates Including Material Nonlinearity and Continuum Damage Mechanics)

  • 박국진;강희진;신상준;최익현;김민기;김승조
    • 한국항공우주학회지
    • /
    • 제42권11호
    • /
    • pp.927-936
    • /
    • 2014
  • 이 논문에서는 복합 적층판의 점진적 파손해석 기법을 개발하고 검증하였다. 강도 및 강성 예측의 정확성을 높이기 위해 재료 비선형 효과와 연속체 손상역학을 동시에 고려하였다. 파손 시작점과 성장을 예측하기 위한 식으로 Hashin의 판별식이 사용되었으며, 파손 모드는 수지인장/전단, 섬유 인장의 2가지 파손모드를 고려하였다. 비선형 탄성 및 점탄성의 구성방정식을 고려한 평형을 계산하기 위해 Newton-Raphson 방법이 사용되었다. 실험을 통해 얻어진 복합재료 단층의 물성을 이용하여 노치가 없는 시편에 인장력을 가했을 때 예상되는 적층복합재의 강도 및 변형률을 예측하였다. 이 경우 선형 물성과 저하계수만을 고려하여 예측된 강성/강도보다 실험결과에 근사하게 나타남을 확인하였다.

고강도 재료를 사용한 외부 보-기둥-슬래브 접합부의 지진응답 (Seismic Response of Exterior Beam-Column-Slab connection using High-Strength Materials)

  • 장극관
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall
    • /
    • pp.343-350
    • /
    • 1999
  • The purpose of this study is to compare the response of the high-strength concrete beam-column-slab subassembly with the response of a normal-strength concrete specimens. Four assemblies were designed 2/3 scale beam-column-slab joint(fc'=240kg/cm2 fc'=700kg/cm2) and tested to investigate seismic behaviour. From the test results 1) flexral cracks emerge to inside of bean deeply for high strength concrete member 2) the high-strength specimens represented stable hysteretic behaviour for the displacement ductility 5.5 but degradation in stiffness and strength and unstable hysteretic behaviors were observed owing to the brittleness of high-strength concrete beyond its range.

  • PDF