• 제목/요약/키워드: strength analyses

검색결과 1,556건 처리시간 0.026초

Prediction of concrete strength from rock properties at the preliminary design stage

  • Karaman, Kadir;Bakhytzhan, Aknur
    • Geomechanics and Engineering
    • /
    • 제23권2호
    • /
    • pp.115-125
    • /
    • 2020
  • This study aims to explore practical and useful equations for rapid evaluation of uniaxial compressive strength of concrete (UCS-C) during the preliminary design stage of aggregate selection. For this purpose, aggregates which were produced from eight different intact rocks were used in the production of concretes. Laboratory experiments involved the tests for uniaxial compressive strength (UCS-R), point load index (PLI-R), P wave velocity (UPV-R), apparent porosity (n-R), unit weight (UW-R) and aggregate impact value (AIV-R) of the rock samples. UCS-C, point load index (PLI-C) and P wave velocity (UPV-C) of concrete samples were also determined. Relationships between UCS-R-rock parameters and UCS-C-concrete parameters were developed by regression analyses. In the simple regression analyses, PLI-C, UPV-C, UCS-R, PLI-R, and UPV-R were found to be statistically significant independent variables to estimate the UCS-C. However, higher coefficients of determination (R2=0.97-1.0) were obtained by multiple regression analyses. The results of simple regression analysis were also compared to the limited number of previous studies. The strength conversion factor (k) values were found to be 14.3 and 14.7 for concrete and rock samples, respectively. It is concluded that the UCS-C can roughly be estimated from derived equations only for the specified rock types.

분기배관의 강도해석에 관한 연구 (A Study on the Strength Analyses of T-Branch Pipes)

  • 남준석;사공성호;백창선;임광규;정재한;민경탁
    • 한국화재소방학회논문지
    • /
    • 제21권2호
    • /
    • pp.36-41
    • /
    • 2007
  • 본 연구에서는 분기배관의 강도해석을 통해 분기배관이 화재안전기준상에서 사용할 수 있는지를 판단하였다. 그 판단 방법으로 상용유한요소프로그램(ABACUS)를 사용하였고, 강도해석결과를 증명하기 위해 해당 분기배관에 본체강도시험을 실시하였다. 그 결과를 통해 분기배관의 사용가능성을 확인하였다. 또한, 분기배관으로 가장 많이 사용되는 배관인 배관용 탄소강관(KS D 3507)과 같은 용도로 사용할 수 있는 스테인리스배관이 KS D 3576(배관용 스테인리스 강관) 10S임을 확인하여 스테인리스배관이 소화배관에 적용될 수 있도록 하였다.

Prediction of fully plastic J-integral for weld centerline surface crack considering strength mismatch based on 3D finite element analyses and artificial neural network

  • Duan, Chuanjie;Zhang, Shuhua
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.354-366
    • /
    • 2020
  • This work mainly focuses on determination of the fully plastic J-integral solutions for welded center cracked plates subjected to remote tension loading. Detailed three-dimensional elasticeplastic Finite Element Analyses (FEA) were implemented to compute the fully plastic J-integral along the crack front for a wide range of crack geometries, material properties and weld strength mismatch ratios for 900 cases. According to the database generated from FEA, Back-propagation Neural Network (BPNN) model was proposed to predict the values and distributions of fully plastic J-integral along crack front based on the variables used in FEA. The determination coefficient R2 is greater than 0.99, indicating the robustness and goodness of fit of the developed BPNN model. The network model can accurately and efficiently predict the elastic-plastic J-integral for weld centerline crack, which can be used to perform fracture analyses and safety assessment for welded center cracked plates with varying strength mismatch conditions under uniaxial loading.

구리/에폭시 계의 필 접착력 분석 (Peel Strength Analyses of Copper/Epoxy System)

  • 최광성;유진;이호영
    • 한국표면공학회지
    • /
    • 제29권4호
    • /
    • pp.238-252
    • /
    • 1996
  • In order to study the effect of interface oxides on the adhesion strength of the copper/epoxy system, copper foils were immersed in black oxide or brown oxide forming solutions before lamination with epoxy prepregs, and variation of peel strength with the treatment time were investigated. Results showed that peel strength decreased rapidly up to 1 minute of treatment lime and remained constant in the case of the black oxide treated specimens, which was accompanied by the thickening of $Cu_2O$ at the Copper/Epoxy interface during the period. In contrast, peel strength increased rapidly up to 1 minute of treatment time and remained constant in the case of the brown oxide treated specimens, which could be ascribed to the thickening of CuO. Subsequent heat treatments of the Copper/Epoxy laminations at $120^{\circ}C$ in air showed that peel strength remained constant in the case of the black oxide treated specimens but decreased gradually in the case of the brown oxide treated specimens. Following XPS analyses revealed that the latter was possibly caused by the coalescence of CuO at the Copper/Epoxy interface into $Cu_2O$.

  • PDF

틸팅대차 프레임에 대한 피로강도평가 절차에 관한 해석적 연구 (An Analytical Study on Fatigue Strength Evaluation Procedure for the Bogie Frame of Tilting Railway Vehicle)

  • 김남포;김정석
    • 한국철도학회논문집
    • /
    • 제8권4호
    • /
    • pp.321-329
    • /
    • 2005
  • This paper has established the strength evaluation procedure of the bogie frame for the Korean tilting train that is being developed in KRRI, In order to establish the strength evaluation procedure, firstly, the loading conditions imposed on the tilting train were investigated. In addition, the static and fatigue strength of the bogie frame has been evaluated. In order to derive the dynamic loads according to the carbody tilting, the load redistribution effect by carbody tilting, the unbalanced lateral acceleration effect by high-speed curving and the tilting actuator force effect have been considered. Multi-body dynamic analyses have been carried out to evaluate the tilting load cases and the strength analysis has been performed by finite element analyses. From this study, the structural safety of the bogie frame could be ensured.

Dog bone shaped specimen testing method to evaluate tensile strength of rock materials

  • Komurlu, Eren;Kesimal, Ayhan;Demir, Aysegul Durmus
    • Geomechanics and Engineering
    • /
    • 제12권6호
    • /
    • pp.883-898
    • /
    • 2017
  • To eliminate the holding and gluing problems making the direct tensile strength test hard to be applied, a new method of testing specimens prepared using lathe machine to make the dog bone shape is assessed whether it could be applied to determine accurate direct tensile strength values of rock materials. A series of numerical modelling analyses was performed using finite element method to investigate the effect of different specimen and steel holder geometries. In addition to numerical modelling study, a series of direct tensile strength tests was performed on three different groups of rock materials and a rock-like cemented material to compare the results with those obtained from the finite element analyses. A proper physical property of the lathed specimens was suggested and ideal failure of the dog bone shaped specimens was determined according to the results obtained from this study.

Stresses analyses of shell structure with large holes

  • Tian, Zongshu;Liu, Jinsong
    • Structural Engineering and Mechanics
    • /
    • 제6권8호
    • /
    • pp.883-899
    • /
    • 1998
  • The strength, deformation and buckling of a large engineering structure consisting of four ellipsoidal shells, two cylindrical shells with stiffening ribs and large holes, one conical shell and three pairs of large flanges under external pressure, self weight and heat sinks have been analysed by using two kinds of five different finite elements - four assumed displacement finite elements (shell element with curved surfaces, axisymmetric conical shell element with variable thickness, three dimensional eccentric beam element, axisymmetric solid revolutionary element) and an assumed stress hybrid element (a 3-dimensional special element developed by authors). The compatibility between different elements is enforced. The strength analyses of the top cover and the main vessel are described in the paper.

강관 내무보강 중공교각의 연성도 평가 (Ducti1ity, Evaluation of Circular Reinforced Concrete Piers with an Internal Steel Tube)

  • 강영종;최진유;김도연;한택희
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 춘계학술대회 논문집
    • /
    • pp.241-248
    • /
    • 2001
  • The ductility of circular hollow reinforced concrete columns with one layer of longitudinal and spiral reinforcement placed near the outside face of the section and the steel tube placed on the inside face of the section is investigated. Such hollow sections are confined through the wall thickness since the steel tube is placed. The results of analytical moment-curvature analyses for such hollow sections are compared with those for the circular section with the sane diameter. In this study, moment-curvature analyses are conducted with Mandel's confined concrete stress-strain relationship in which the effect of confinement is to increase the compression strength and ultimate strain of concrete. The moment-curvature analyses confirmed that the ductility is primarily influenced on the ultimate strain. The variables influenced on the ultimate strain is the ratio and yield strength of confining reinforcement and the compression strength for confined concrete. From this ultimate strain - the transverse reinforcement ratio relationship, the transverse reinforcement ratio for circular hollow reinforced columns with confinement is proposed. The proposed transverse reinforcement ratio is confirmed by experimental results.

  • PDF

Experimental and analytical investigation of high-strength concrete-filled steel tube square columns subjected to flexural loading

  • Chung, Kyung-Soo;Kim, Jin-Ho;Yoo, Jung-Han
    • Steel and Composite Structures
    • /
    • 제14권2호
    • /
    • pp.133-153
    • /
    • 2013
  • The concrete-filled steel tube (CFT) columns have several benefits of high load-bearing capacity, inherent ductility and toughness because of the confinement effect of the steel tube on concrete and the restraining effect of the concrete on local buckling of steel tube. However, the experimental research into the behavior of square CFT columns consisting of high-strength steel and high-strength concrete is limited. Six full scale CFT specimens were tested under flexural moment. The CFT columns consisted of high-strength steel tubes ($f_y$ = 325 MPa, 555 MPa, 900 MPa) and high-strength concrete ($f_{ck}$ = 80 MPa and 120 MPa). The ultimate capacity of high strength square CFT columns was compared with AISC-LRFD design code. Also, this study was focused on investigating the effect of high-strength materials on the structural behavior and the mathematical models of the steel tube and concrete. Nonlinear fiber element analyses were conducted based on the material model considering the cyclic bending behavior of high-strength CFT members. The results obtained from the numerical analyses were compared with the experimental results. It was found that the numerical analysis results agree well with the experimental results.

Seismic performance of eccentrically braced frames with high strength steel combination

  • Lian, Ming;Su, Mingzhou;Guo, Yan
    • Steel and Composite Structures
    • /
    • 제18권6호
    • /
    • pp.1517-1539
    • /
    • 2015
  • Eccentrically braced frames (EBFs) often use conventional steel with medium yield strength. This system requires structural members with large cross-sections for well seismic behavior, which leads to increased material costs. In eccentrically braced frames with high strength steel combination (HSS-EBFs), links use Q345 steel (specified nominal yield strength 345 MPa), braces use Q345 steel or high strength steel while other structural members use high strength steel (e.g., steel Q460 with the nominal yield strength of 460 MPa or steel Q690 with the nominal yield strength of 690 MPa). For this approach can result in reduced steel consumption and increased economic efficiency. Several finite element models of both HSS-EBFs and EBFs are established in this paper. Nonlinear hysteretic analyses and nonlinear time history analyses are conducted to compare seismic performance and economy of HSS-EBFs versus EBFs. Results indicate that the seismic performance of HSS-EBFs is slightly poorer than that of EBFs under the same design conditions, and HSS-EBFs satisfy seismic design codes and reduce material costs.