• 제목/요약/키워드: streamwise vortex

검색결과 106건 처리시간 0.026초

후향계단 난류 박리재부착 유동에서의 대형와의 구조 (Large-Scale Vertical Structure in Separated and Reattaching Turbulent flow over a Backward Facing Step)

  • 안승광;이인원;성형진
    • 대한기계학회논문집B
    • /
    • 제26권12호
    • /
    • pp.1674-1680
    • /
    • 2002
  • An experimental study was made of a large-scale vortical structure over a backward-facing step. The Reynolds number based on the step height was R $e_{H}$ =33,000. To recognize the large-scale vortex, three components of velocity were measured. The measurements were performed in the recirculation zone (x/H=4.0) and the reattachment zone(x/H=7.5). To measure the wall pressure fluctuations in a turbulent flow over a backward-facing step, a 32-channel microphone array was installed beneath the wall in the streamwise and spanwise directions. From the measured pressure field, the size of large-scale vortex was obtained. As a detailed study, a conditionally-averaging technique was employed to characterize the coherent structure of the large-scale vortex. To see the relationship between the flow field and the relevant spatial mode of the pressure field, the spatial box filtering (SBF) was examined. A cross-correlation between velocity and pressure fluctuations was performed to identify the structure and the length scale of the large-scale vortex.x.

축류홴 익단누설와류의 수치적 해석 (Numerical Analysis of a Tip Leakage Vortex in an Axial Flow Fan)

  • 장춘만;김광용
    • 한국유체기계학회 논문집
    • /
    • 제7권1호
    • /
    • pp.36-44
    • /
    • 2004
  • Three-dimensional vortical flow and separated flow topology near the casing wall in an axial flow fan having two different tip clearances have been investigated by a Reynolds-averaged Navier-Stokes (RANS) flow simulation. The simulation shows that the tip leakage vortex formed close to the leading edge of the blade tip on suction side grows in the streamwise direction. On the casing wall, a separation line is formed upstream of the leakage vortex center due to the interference between the leakage vortex and main flow. The reverse flow is observed between the separation line and the attachment line generated downstream of the trailing edge, and increased with enlarging tip clearance. The patterns of a leakage velocity vector including a leakage flow rate are also analyzed according to two tip clearances. It is noted that the understanding of the distribution of a limiting streamline on the casing wall is very important to grasp the characteristics of the vortical flow in the axial flow fan.

원형 실린더가 주기적으로 배열된 채널 유동 - 주 불안정성 및 유동특성 - (CHANNEL FLOW WITH A STREAMWISE-PERIODIC ARRAY OF CIRCULAR CYLINDERS - PRIMARY INSTABILITY AND FLOW CHARACTERISTICS -)

  • 윤동혁;양경수;강창우
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.352-357
    • /
    • 2010
  • A parametric study has been carried out to elucidate the characteristics of channel flow with a streamwise-periodic array of cylinders. This flow configuration is relevant to heat exchanger applications. The presence of cylinders in channel flow causes the attached wall boundary layer to separate, leading to significant change in flow instabilities. There exist two kinds of instabilities; flow undergoes a primary instability (Hopf bifurcaiton) at a lower Reynolds number, and the unsteady two-dimensional flow becomes unstable to three-dimensional disturbances at a higher Reynolds number. We report here the dependencies of the primary instability as well as the flow characteristics of the subsequent unsteady flow including flow-induced forces and Strouhal number of vortex shedding, on the distance between the cylinder and the channel wall.

  • PDF

원형 실린더가 주기적으로 배열된 채널 유동의 주 유동 불안정성 - 실린더와 채널 벽 간격의 영향 - (PRIMARY INSTABILITY OF THE CHANNEL FLOW WITH A STREAMWISE-PERIODIC ARRAY OF CIRCULAR CYLINDERS - EFFECTS OF THE DISTANCE BETWEEN THE CYLINDER AND THE CHANNEL WALL -)

  • 윤동혁;양경수;강창우
    • 한국전산유체공학회지
    • /
    • 제15권3호
    • /
    • pp.54-59
    • /
    • 2010
  • A parametric study has been carried out to elucidate the characteristics of channel flow with a streamwise-periodic array of cylinders. This flow configuration is relevant to heat exchanger applications. The presence of cylinders in channel flow causes the attached wall boundary layer to separate, leading to significant change in flow instabilities. There exist two kinds of instabilities; flow undergoes a primary instability (Hopf bifurcation) at a lower Reynolds number, and the unsteady two-dimensional flow becomes unstable to three-dimensional disturbances at a higher Reynolds number. We report here the dependencies of the primary instability as well as the flow characteristics of the subsequent unsteady flow, including flow-induced forces and Strouhal number of vortex shedding, on the distance between the cylinder and the channel wall.

DNS of Vortex Cavitations in Turbulent Separated Layer

  • Kajishima, Takeo;Ohta, Takashi;Sakai, Hiroki;Okabayashi, Kie
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.11-12
    • /
    • 2006
  • We conducted a direct numerical simulation (DNS) to establish database for the purpose of improvement of practical method which is applicable to cavitating turbulent flows. Cavitations caused by spanwise and streamwise vortices, which are typical features in high shear layer, is represented by a simple model and interaction between vortices and cavities is reproduced. The qualitative agreement between computation and experiment are reasonable. Cavities due to streamwise vortices in a shear layer seem to attenuate turbulent eddies.

  • PDF

Interaction of turbulences with non-breaking divergent waves in an open channel

  • Hwang, Ayoung;Seok, Woochan;Lee, Sang Bong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.35-49
    • /
    • 2021
  • This paper presents a direct numerical simulation of turbulent flows over a bump in an open channel to examine the turbulence characteristics near divergent waves emanating from the bump and to investigate the interaction of the turbulences with the divergent waves. To verify the reliability of the simulations, the mean velocity profile and root-mean-square of velocity fluctuations are compared with previous data. The anisotropic invariant maps show that the ratio of the streamwise to spanwise velocity fluctuations plays an important role in characterizing the anisotropic nature of the separated shear layer behind the bump in the vicinity of the free surface. The vortex identification discloses a large-scale streamwise vortical structure from the mean velocity field and a cluster of small coherent structures from the instantaneous velocity field, which are responsible for the anisotropic characteristics of the turbulence beneath the free surface.

경사충격파와 와류간의 상호작용에 관한 수치적 연구 (A numerical investigation on the oblique shock wave/vortex interaction)

  • 문성목;김종암;노오현;홍승규
    • 한국항공우주학회지
    • /
    • 제32권8호
    • /
    • pp.20-28
    • /
    • 2004
  • 경사충격파와 와류간의 상호작용에 관한 수치적 해석은 경사충격파에 기인한 와류붕괴 의 발생에 관한 이론적 모델 및 실험치와 비교하기 위해 수행되었다. 본 연구의 해석을 위해 마하수에 기초한 Roe의 기법 (RoeM) 과 2-방정식 난류 모델을 이용하여 3차원 난류 유동장을 효과적으로 계산하였다. 자유류 마하수 2.49에서 와유세기, 축방향속도 성분, 충격파 세기의 변화에 따른 상호작용의 영향을 연구하였다. 2-방정식 난류모델인 k-wSST 난류모델과 적절히 모델링된 와류모델을 이용하여 수치연구를 수행함으로써 실험적으로 관찰된 여러 유동장을 정확히 모사할 수 있었다. 경사충격파에 기인한 와류붕괴의 발생에 관한 기준을 결정하기 위한 본 연구결과는 이론적 모델과 실험치와 일치된 결과를 보여주고 있음을 확인하였다.

동축공기 수소확산 화염에서의 화염과 와류의 상호작용 실험연구 (Experimental Study on Flame-Vortex Interactions in Turbulent Hydrogen Non-premixed Flames with Coaxial Air)

  • 김문기;오정석;최영일;윤영빈
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.86-94
    • /
    • 2006
  • This paper investigates the effects of acoustic forcing on NOx emissions and mixing process in the near field region of turbulent hydrogen nonpremixed flames. The resonance frequency was selected to force the coaxial air jet acoustically, because the resonance frequency is effective to amplify the forcing amplitude and reduce NOx emissions. When the resonance frequency is acoustically excited, a streamwise vortex is formed in the mixing layer between the coaxial air jet and coflowing air. As the vortex develops downstream, it entrains both ambient air and combustion products into the coaxial air jet to mix well. In addition, the strong vortex pulls the flame surface toward the coaxial air jet, causing intense chemical reaction. Acoustic excitation also causes velocity fluctuations of coaxial air jet as well as fuel jet but, the maximum value of centerline fuel velocity fluctuation occurs at the different phases of $\Phi$=$180^{\circ}$ for nonreacting case and $\Phi$=$0^{\circ}$ for reacting case. Since acoustic excitation enhances the mixing rate of fuel and air, the line of the stoichiometric mixture fraction becomes narrow. Finally, acoustic forcing at the resonance frequency reduces the normalized flame length by 15 % and EINOx by 25 %, compared to the flame without acoustic excitation.

  • PDF

Impact of the lateral mean recirculation characteristics on the near-wake and bulk quantities of the BARC configuration

  • Lunghi, Gianmarco;Pasqualetto, Elena;Rocchio, Benedetto;Mariotti, Alessandro;Salvetti, Maria Vittoria
    • Wind and Structures
    • /
    • 제34권1호
    • /
    • pp.115-125
    • /
    • 2022
  • The high-Reynolds number flow around a rectangular cylinder, having streamwise to crossflow length ratio equal to 5 is analyzed in the present paper. The flow is characterized by shear-layer separation from the upstream edges. Vortical structures of different size form from the roll-up of these shear layers, move downstream and interact with the classical vortex shedding further downstream in the wake. The corresponding mean flow is characterized by a recirculation region along the lateral surface of the cylinder, ending by mean flow reattachment close to the trailing edge. The mean flow features on the cylinder side have been shown to be highly sensitive to set-up parameters both in numerical simulations and in experiments. The results of 21 Large Eddy Simulations (LES) are analyzed herein to highlight the impact of the lateral mean recirculation characteristics on the near-wake flow features and on some bulk quantities. The considered simulations have been carried out at Reynolds number Re=DU_∞/ν=40 000, being D the crossflow dimension, U_∞ the freestream velocity and ν the kinematic viscosity of air; the flow is set to have zero angle of attack. Some simulations are carried out with sharp edges (Mariotti et al. 2017), others with different values of the rounding of the upstream edges (Rocchio et al. 2020) and an additional LES is carried out to match the value of the roundness of the upstream edges in the experiments in Pasqualetto et al. (2022). The dimensions of the mean recirculation zone vary considerably in these simulations, allowing us to single out meaningful trends. The streamwise length of the lateral mean recirculation and the streamwise distance from the upstream edge of its center are the parameters controlling the considered quantities. The wake width increases linearly with these parameters, while the vortex-shedding non-dimensional frequency shows a linear decrease. The drag coefficient also linearly decreases with increasing the recirculation length and this is due to a reduction of the suctions on the base. However, the overall variation of C_D is small. Finally, a significant, and once again linear, increase of the fluctuations of the lift coefficient is found for increasing the mean recirculation streamwise length.

주기적으로 배열된 원형 실린더를 이용한 채널 유동의 열전달 증진 (HEAT TRANSFER ENHANCEMENT IN CHANNEL FLOW BY A STREAMWISE-PERIODIC ARRAY OF CIRCULAR CYLINDERS)

  • 정태경;양경수;이경준;강창우
    • 한국전산유체공학회지
    • /
    • 제18권2호
    • /
    • pp.85-92
    • /
    • 2013
  • In this study, we consider heat transfer enhancement in laminar channel flow by means of an infinite streamwise array of equispaced identical circular cylinders. This flow configuration can be regarded as a model representing a micro channel or an internal heat exchanger with cylindrical vortex generators. A numerical parametric study has been carried out by varying Reynolds number based on the bulk mean velocity and the cylinder diameter, and the gap between the cylinders and the channel wall. An immersed boundary method was employed to facilitate to implement the cylinders on a Cartesian grid system. No-slip condition is employed at all solid boundaries including the cylinders, and the flow is assumed to be periodic in the streamwise direction. Also, the Prandtl number is fixed as 0.7. For thermal boundary conditions on the solid surfaces, it is assumed that heat flux is constant on the channel walls, while the cylinder surfaces remain adiabatic. The presence of the circular cylinders arranged periodically in the streamwise direction causes a significant topological change of the flow, leading to heat transfer enhancement on the channel walls. The Nusselt number averaged on the channel wall is presented for the wide ranges of Reynolds number and the gap. A significant heat transfer enhancement is noticed when the gap is larger than 0.8, while the opposite is the case for smaller gaps. More quantitative results as well as qualitative physical explanations are presented to justify the effectiveness of varying the gap to enhance heat transfer from the channel walls.