• Title/Summary/Keyword: stream habitat

Search Result 408, Processing Time 0.031 seconds

Assessment of Physical Habitat and the Fish Community in Korea Stream

  • Hur, Jun Wook;Joo, Jin Chul;Choi, Byungwoong
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.1
    • /
    • pp.59-67
    • /
    • 2022
  • The purpose of this study is to provide essential data necessary to assess ecological flow requirements by understanding habitat conditions for fish species through monitoring an ecological environment in the Korea stream (Dal Stream) and building related database. On-site surveys were conducted for identifying ecological and habitat conditions at the four monitoring sites. Fish sampling was carried out at the selected four sites (St.) during the period ranging from September, 2008 to September, 2009. At the four sampling sites, we measured water surface elevation, depth and velocity at the cross-sections. Optimal Ecological Flowrates (OEFs) were estimated using the Habitat Suitability Index (HSI) established for four fish species Zacco koreanus (St.1), Pungtungia herzi (St.2), Coreoleuciscus splendidus (St.3), and Zacco platypus (St.4) selected as icon species using the Physical HABitat SIMulation system (PHABSIM). Eighteen species (56.3%) including Odontobutis interrupta, Coreoperca herzi and C. splendidus were found endemic out of the 32 species in eight families sampled during this study period. The endangered species was collected Acheilognathus signifier, Pseudopungtungia tenuicorpa and Gobiobotia macrocephala, and this relative abundance was 9.4%. The most frequently found one was Z. platypus (31.3%) followed by C. splendidus (17.6%) and Z. koreanus (15.7%). The estimated IBI values ranged from 27.3 to 34.3 with average being 30.3 out of 50, rendering the site ecologically poor to fair health conditions. For C. splendidus (St.3), the dominant fish species in the stream, the favored habitat conditions were estimated to be 0.3-0.5 m for water depth, 0.4-0.7 m/s for flow velocity and sand-cobbles for substrate size, respectively. An OEFs of 8.5 m3/s was recommended for the representative fish species at the St.3.

Health Assessment of Aquatic Ecosystem for Wonju Stream Using the Composition of Aquatic Insects (수서곤충을 이용한 원주천 수서생태계 건강도 평가)

  • Choi, Jun-Kil;Shin, Hyun-Seon;Mitamura, Osamu;Kim, Sook-Jung
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.5
    • /
    • pp.544-550
    • /
    • 2008
  • This study conducted a survey on the ecosystem of Wonju stream from May until November in 2004 and made an health assessment of Wonju stream using family biotic indices(FBI) and physical habitat assessment(PHA) of the aquatic insects. Through this survey, aquatic insects covering 8 orders, 37 families, 62 genuses, and 92 species were observed at 9 stations along Wonju stream. In terms of family biotic indices, it was confirmed that station 1,2 and 3 were maintaining the healthiest stream ecosystem with the value ranging from 4.55 to 4.82. In addition, station 2 was found to have the best habitat environment in the correlation between physical habitat assessment and family biotic indices with its value of 100 and 4.82, respectively. However, station 7 and 9 showed the lowest habitat environment with the value of 45, 6.17 and 45, 6.97, respectively. posing the need for improvement in PHA; further, station 7 and 9 showed inverted correlationship between PHA and FBI.

Eco-Hydrologic Assessment of Maintenance Water Supply on Oncheon Stream (온천천 유지용수 공급에 따른 생태수문환경 변화분석)

  • Jang, Ju-Hyoung;Kim, Sang-Dan;Sung, Ki-June;Shin, Hyun-Suk
    • Journal of Environmental Science International
    • /
    • v.16 no.8
    • /
    • pp.973-983
    • /
    • 2007
  • The eco-hydrologic effects of maintenance water supply on Oncheon stream are studied using hydrologic, hydraulic and ecologic models. SWMM (Storm Water Management Model) is used for long-term simulation of runoff quantity and water quality from Oncheon stream watershed. Using the output hydrologic variables from SWMM, HEC-RAS (River Analysis System) is then used to simulate the hydraulics of water flow through Oncheon stream channels. Such hydrologic, hydraulic and water quality output variables from SWMM and HEC-RAS are served as input data to execute PHABSIM (Physical Habitat Simulation) for the purpose of predicting the micro-habitat conditions in rivers as a function of stream flow and the relative suitability of those conditions to aquatic life. It is observed from the PHABSIM results that the weighted usable area for target fishes has the maximum value at $2m^3/s$ of instream flow. However, mid and down stream areas that have concrete river bed and covered region are unsuitable for fish habitat regardless of instream flow increment. The simulation results indicate that the simple maintenance water supply is limited in its effect to improve the ecological environment in Oncheon stream. Therefore, it is imperative to improve water quality and to recover habitat conditions simultaneously.

Distribution of Wildbirds According to Habitat Environment in Gap Stream (갑천의 서식지 환경에 따른 야생조류 분포에 관한 연구)

  • Lee, Joon-Woo;Lee, Do-Han;Paik, In-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.30 no.1
    • /
    • pp.41-58
    • /
    • 2003
  • This study was conducted to investigate bird community and to suggest a proper way how to manage protect bird community in Gap stream. The survey was carried out over four sections by the line transect method and point counts method from September 2001 to August 2002. Natural stream region as Gasuwon Bridge - Mannyeon Bridge are observed birds were 11 orders 29 families 67 species, Artificial stream region as Mannyeon Bridge - Daedeok Bridge are observed birds were 6 orders 10 families 30 species, Daedeok Bridge - Wonchon Bridge are 8 orders 12 families 28 species, Wonchon Bridge - Gap Stream Bridge are 8 orders 18 families 40 species. All the observed birds in artificial stream region are 8 orders 19 families 47 species. Number of species in natural stream region was higher than artificial stream region owe to a various habitat environment such as forest, cultivated land, streamside forest, sandy plain, gravelly field, reedy field etc. and can not add with the interface and the usage of the human. Number of species in artificial stream region was lower than natural stream region owe to a simple habitat environment and the water ecosystem is severed with embankment block and grass plot with the land ecosystem. The furtherance of various habitat environment which considers the ecosystem like the natural stream as the water ecosystem is joined together with the land ecosystem is desired to attract various wildbirds in Gap stream. The design is desired with the maintenance of the stream to consider the stream corridor which plays ecological important role as connect the fragment habitats.

  • PDF

Relationships among a Habitat-Riparian Indexing System (HIS), Water Quality, and Land Coverage: a Case Study in the Main Channel of the Yangsan Stream (South Korea)

  • Jeong, Kwang-Seuk;Kim, Dong-Kyun;Hong, Dong-Kyun;Choi, Jong-Yun;Yoon, Ju-Duk;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.502-509
    • /
    • 2009
  • In this study a total of 27 stream sites, at 1 km intervals, were monitored for simple physicochemical water characteristics, land coverage patterns, and stream environment characteristics using the Habitat-riparian Indexing System (HIS), in the Yangsan Stream. The HIS has been tested in previous research, resulting in some identification of advantages in the application to the stream ecosystems data. Even though reliable stream environment characterization was possible using HIS, there was no information about the application of this tool to present continuity of environmental changes in stream systems. Also the necessity was raised to compare the results of HIS application with land coverage information in order to provide useful information in management strategy development. The monitoring results of this study showed that changes of environmental degradation were well represented by HIS. Especially, stream environment degradation due to construction was relatively well reflected in the HIS monitoring results, and the main causality of Yangsan Stream degradation was expansion of the urbanized area. In addition, there were significant relationships between the HIS scores and land coverage information. Therefore, it is necessary to prepare appropriate options in controlling or managing the expansion of the industrialized areas in this stream basin in order to improve the stream environment. For this purpose, ensemble utilization of HIS results, water quality, and geographical information, resulting in integration with remote sensing processes can be possible.

Estimation of an Optimum Ecological Stream Flow in the Banbyeon Stream Using PHABSIM - Focused on Zacco platypus and Squalidus chankaensis tsuchigae - (PHABSIM을 이용한 반변천 하천생태유량 산정 - 피라미, 참몰개를 대상으로 -)

  • Park, Jinseok;Jang, Seongju;Song, Inhong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.51-62
    • /
    • 2020
  • The objective of this study was to estimate an optimum ecological flow rate in the Banbyeon stream based on the two representative fish species. Hydraulic stream environment was simulated with HEC-RAS for two water flow regimes and used for the PHABSIM hydraulic simulation. A dominant species of Zacco platypus and an endemic species of Squalidus chankaensis tsuchigae were selected as the representative fishes whose habitat conditions were evaluated for the spawning and adult stages. Weighted usable area (WUA) was estimated based on habitat suitability index (HSI) and PHABSIM habitat simulation. Overall deep water zone in the stream demonstrated greater WUA which implies better habitat status. The estimated WUA for Zacco platypus as the dominant species was about five times greater than Squalidus chankaensis tsuchigae at the stream flow of 12 ㎥/s. The optimum ecological flow rates were 15 ㎥/s and 25 ㎥/s for the respective spawning and adult stages of Zacco platypus, while 5 ㎥/s was estimated for both the life cycles of Squalidus chankaensis tsuchigae. Assuming that the dominant species may survive better in wider flow regimes, the optimum ecological flow rate should be determined rater based on the endemic species and flow rate of 5 ㎥/s was suggested for the Banbyeon stream.

Ichthyofauna and Habitat Type of the Fish in Tamjin River System, Korea (탐진강 수계의 어류상과 어류의 서식형)

  • Nam, Dong-Woo;Cha, Seong-Sig;Choi, Chung-Gil;Lee, Jong-Bin;Lee, Hak-Young
    • Journal of Environmental Science International
    • /
    • v.18 no.9
    • /
    • pp.1001-1010
    • /
    • 2009
  • To investigate the ichthyofauna and habitat type of the fish in Tamjin River system, Korea, fishes were collected with cast net ($5{\times}5\;mm$, $8{\times}8\;mm$) and dip net ($4{\times}4\;mm$) at eight stations seasonally during five years from 2000 to 2004. 56 species belonging to 18 families were collected and 15 Korean endemic species( 26.8%) were investigated. While Coreoperca kawamebari was occurred at every station, the number of individuals and composition were decreased. Anguilla marmorata was not collected and the exotic species didn't appeared. Dominant species were Zacco platypus(34.2%), Squalidus gracilis majimae (9.4%), Microphysogobio yaluensis(8.1%), Zacco temmincki(6.8%) and Acheilognathus lanceolatus(5.1%). The surveyed stations were clustered into 3 groups: up stream, main stream and estuary. With the cluster analysis using the relative abundance of major fishes at each habitat, fishes were separated into 5 habitat types: U (upstream type), UM (up and main stream type), M (main stream), ME (main stream and estuarine type), and E (estuarine type).

Comparision of Physical Habitat Suitability Index for Fishes in the Rivers of Han and Geum River Watersheds (한강 및 금강수계 하천에서 어류의 물리서식처 적합도지수 비교)

  • Kang, Hyeongsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.71-78
    • /
    • 2012
  • The habitat suitability is an important factor to estimate the distribution and size of the physical habitat in river. This suitability is also a key factor to decide the ecological flow discharge for the fish. For the ecological analysis in river, accurate values of habitat suitability index for various fishes are necessary. In general, fish habitat is affected by the physical factor of the flow depth and velocity as well as the chemical and biological factors of nutrient and attached algae. Thus, the condition of the fish habitat is expected to be changed with each watershed and tributary. In this study, the habitat suitability indices for fishes were proposed by using the field monitoring data in the rivers of the Han and Geum river watersheds. The proposed indices for three fishes are compared: Zacco platypus, Zacco temminckii, and Coreoleuciscus splendidus. The results show that Zacco platypus has a similar distribution of habitat suitability index in two watersheds. Zacco temminckii and Coreoleuciscus splendidus, however, have different distributions with watersheds. Also, for Zacco platypus, the developed indices at three tributaries of the Han river are compared: Cheng-mi stream, Dal stream, and Hong-cheon stream. The comparision shows that the index in the Cheng-mi stream is different with those in the other rivers. This is expected to be because of a high nutrient concentration at the Cheong-mi stream.

Estimation of Habitat Suitability Index of Fish Species in the Gapyeong stream (가평천 어류의 서식처적합도지수 산정)

  • Kong, Dongsoo;Son, Se-Hwan;Kim, Jin-Young;Kim, Piljae;Kwon, Yongju;Kim, Jungwoo;Kim, Ye Ji;Min, Jeong Ki;Kim, Ah Reum
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.626-639
    • /
    • 2017
  • Based on an ecological monitoring in a Korean stream (Gapyeong), Habitat Suitability Index (HSI) of nine fish species was developed for three physical habitat factors : current velocity, water depth and substrate. The species were chosen based on their abundance and frequency in the fish community of the Gapyeong stream. The Weibull model was used as the probability density function to analyze the distribution and number of each fish species according to the three identified physical factors, which showed good results. This HSI equation has advantages because it statistically expresses habitat preferences of fish species simply and clearly. From that, we can quantitatively deduce the central tendency and variation of environmental factors for fish distribution. The selected fish species showed different preferences for each habitat factor respectively. Although there are some exceptions, the distribution and abundance of individual species of nektonic fish (Zacco koreanus, Zacco platypus, Microphysogobio longidorsalis and Pungtungia herzi) were positively skewed to deep water and fine substrate while riffle-benthic fish (Koreocobitis rotundicaudata and Coreoleuciscus splendidus) were normally distributed at the shallow and coarse substrate zone. It seems that the species showing the positively skewed distribution to the current, Z. koreanus, Z. platypus, M. longidorsalis and P. herzi have adapted themselves to the fast current and have expanded their niche.

Development of Habitat-riparian Quality Indexing System as a Tool of Stream Health Assessment: Case Study in the Nakdong River Basin

  • Jeong, Kwang-Seuk;Joo, Gea-Jae;Kim, Dong-Kyun;Lineman, Maurice;Kim, Sang-Hyeon;Jang, Il;Hwang, Soon-Jin;Kim, Jin-Hong;Lee, Jae-Kwan;Byeon, Myeong-Seop
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.499-511
    • /
    • 2008
  • The major focus of this study is to evaluate a newly developed stream naturalness index system 'Habitat-riparian Indexing System (HIS).' There have been many studies that have assessed stream naturalness in order to provide information required for restoration. The results of these studies were enough for the purpose of the studies; however, the methodologies were limited especially with respect to rapid measurement and the representation of ecological habitats. Therefore, we derived crucial variables from a popularly utilized method and merged them with other criteria obtained from overseas approaches, resulting in the development of the HIS method. The stability of HIS was evaluated by comparing the results with the Stream Naturalness Index (SNI) of Cho (1997). We monitored 100 stream sites in the Nakdong River system using the two different methods for two sampling periods (spring and autumn), and the results were compared using statistical analyses. The determination coefficients between the index values from two methods were c.a. 0.6 for both seasons, and statistics revealed that HIS had a relatively higher stability, providing index values for stream environments. The results of this work suggest a possibility of the utility of HIS for other stream habitats.