• Title/Summary/Keyword: stream discharge estimation

Search Result 98, Processing Time 0.038 seconds

Stream flow estimation in small to large size streams using Sentinel-1 Synthetic Aperture Radar (SAR) data in Han River Basin, Korea

  • Ahmad, Waqas;Kim, Dongkyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.152-152
    • /
    • 2019
  • This study demonstrates a novel approach of remotely sensed estimates of stream flow at fifteen hydrological station in the Han River Basin, Korea. Multi-temporal data of the European Space Agency's Sentinel-1 SAR satellite from 19 January, 2015 to 25 August, 2018 is used to develop and validate the flow estimation model for each station. The flow estimation model is based on a power law relationship established between the remotely sensed surface area of water at a selected reach of the stream and the observed discharge. The satellite images were pre-processed for thermal noise, radiometric, speckle and terrain correction. The difference in SAR image brightness caused by the differences in SAR satellite look angle and atmospheric condition are corrected using the histogram matching technique. Selective area filtering is applied to identify the extent of the selected stream reach where the change in water surface area is highly sensitive to the change in stream discharge. Following this, an iterative procedure called the Optimum Threshold Classification Algorithm (OTC) is applied to the multi-temporal selective areas to extract a series of water surface areas. It is observed that the extracted water surface area and the stream discharge are related by the power law equation. A strong correlation coefficient ranging from 0.68 to 0.98 (mean=0.89) was observed for thirteen hydrological stations, while at two stations the relationship was highly affected by the hydraulic structures such as dam. It is further identified that the availability of remotely sensed data for a range of discharge conditions and the geometric properties of the selected stream reach such as the stream width and side slope influence the accuracy of the flow estimation model.

  • PDF

Estimation of Baseflow Discharge through Several Streams in Jeju Island, Korea (제주도 주요하천의 기저유출량 산정)

  • Moon Duk-Chul;Yang Sung-Kee;Koh Gi-Won;Park Won-Bae
    • Journal of Environmental Science International
    • /
    • v.14 no.4
    • /
    • pp.405-412
    • /
    • 2005
  • Groundwater in Jeju Island, flowing through main stream, is spring water from underground. To set a fixed quantity of groundwater flowing from surface in a hydrological view, 4 downstream (Woedo stream, Gangjung stream, Yeonwoe stream and Ongpo stream) were selected to calculate the characteristic of baseflow and the base-flow discharge through the data on tachometry. There were 11 to 14 level peak caused by runoff, mostly occurred during monsoon season. Also, duration of runoff was 15 to 25 hours, well reflecting the characteristic of inclined, short stream length in Jeju Island and pervious hydrogeographical feature. In case of Gangjung stream, Yeonwoe stream and Ongpo stream, variation of stream water level by baseflow rose above during summer, which was closely linked to the distribution of seasonal precipitation. From autumn to spring, water level fell below while that of Woedo stream remained the same all year round. Data on the water level observed in Woedo stream and Gangjung stream in every single minutes was applied to weir formula(equation of Oki and Govinda Rao) to calculate baseflow discharge. Also, using the data on current and water level calculated in Ongpo stream and Yeonwoe stream, water level-water flow rating was applied to assess base flow discharge.

Flood Discharge Analysis on Land Use Changes in Han Stream, Jeju Island (토지이용변화에 따른 한천유역의 홍수유출 변동 분석)

  • Yang, Se-Chang;Yang, Sung-Kee;Lee, Jun-Ho;Jung, Woo-Yul;Ko, Kwang-Hyo
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.425-435
    • /
    • 2015
  • A number of projects for development have been done continuously due to the increase of tourist in Jeju Island. However flood disaster countermeasure due to urbanization is not considered during this development projects. This study is to make basic process for the flood estimation in Han stream of Jeju Island. The variation of stream discharge due the every 5 years' land use change from 1980 to 2005. Data for flood events (rainfall and discharge) were collected for HEC-HMS model. Clark method was used for unit hydrograph analysis. For the estimation of Clark unit hydrograph parameters, Kraven II and Sabol's empirical equations were applied. The peak discharge increased 9.9~33.67% and total discharge amount increased 12.53~30.21%. Also, time of concentration for peak discharge was reduced by 10 minutes for each event.

A Study on Estimation by Depth Integrating Method of Sediment Discharge (수심적분법에 의한 유사량 추정연구)

  • 서승덕;김활곤;우효섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.1
    • /
    • pp.90-97
    • /
    • 1996
  • In Korea, total sediment discharge of a river has been estimated simply by using certain sediment transport formulas including, among others, Einstein's formula. Those formular, however, are known not to be reliable enough for the result calculated by them to be used directly to river planning and management. Therefore, the study used the Modified Einstein Procedure to the estimation of total sediment discharge, because this method is reliable estimated by measurement. Here, measurement of sediment discharge used depth integrating method. The major results obtained from the study for estimation by depth integrating method of sediment discharge in Naeseong stream are as follow; 1 The sedeiment characteristics of Naeseong stream are; The distribution of sediment grain size shows that silt and clay are 55% and sand is 45%. and the bed load sediment grain size is constituted that sand contained with the grain size from O.062mm to 2.0mm is 80% 2. The sediment rating formulas derived from the regression analysis between the sediment discharge and flow discharge are; Seogpo-Gyo : Qs=$0.017 \times 10^{-4} Q^{2.352}$, where discharge is l0cms $0.074 \times 10^{-4} Q^{2.066}$, where discharge is l0cms

  • PDF

Development of a Stream Discharge Estimation Program (자연하천 유량산정 프로그램 개발)

  • Lee Sang Jin;Hwang Man Ha;Lee Bae Sung;Ko Ick Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.1
    • /
    • pp.27-38
    • /
    • 2006
  • In this study, we developed a program to estimate discharge efficiently considering major hydraulic characteristic including water level, river bed, water slope and roughness coefficient in a natural river. Stream discharge was measured at Gongju gauge station located in the down stream of the Daechung Dam during normal and dry seasons from 2003 to 2004. The developed model was compared with the results from the existing rating curve at T/M gage stations, and was used for runoff analyses. Evaluating the developed river discharge estimation program, it was applied during 1983-2004 that base flow separation method and RRFS (Rainfall Runoff Forecasting System) which is based on SSARR (Streamflow Synthesis And Resevoir Regulation). The result presents the stage-discharge curve creator range at the Gong-ju is overestimated by approximately $10-20\%$, especially at the low stage. It is attributed to the hydraulic characteristics at the study. The discharge simulated by the RRFS and base flow separation, which is calibrated using the measurement at the early spring and late fall season during relatively d]v season, shows the least errors. The coefficient of roughness at Gongju station varied with the high and low water level.

Estimation of Stream Discharge using Antecedent Precipitation Index Models in a Small Mountainous Forested Catchment: Upper Reach of Yongsucheon Stream, Gyeryongsan Mountain (산악 산림 소유역에서 선행강우지수를 이용한 하천유량 추정: 계룡산 용수천 상류)

  • Jung, Youn-Young;Koh, Dong-Chan;Han, Hye-Sung;Kwon, Hong-Il;Lim, Eun-Kyung
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.36-45
    • /
    • 2016
  • Variability in precipitation due to climate change causes difficulties in securing stable surface water resource, which requires understanding of relation between precipitation and stream discharge. This study simulated stream discharge in a small mountainous forested catchment using antecedent precipitation index (API) models which represent variability of saturation conditions of soil layers depending on rainfall events. During 13 months from May 2015 to May 2016, stream discharge and rainfall were measured at the outlet and in the central part of the watershed, respectively. Several API models with average recession coefficients were applied to predict stream discharge using measured rainfall, which resulted in the best reflection time for API model was 1 day in terms of predictability of stream discharge. This indicates that soil water in riparian zones has fast response to rainfall events and its storage is relatively small. The model can be improved by employing seasonal recession coefficients which can consider seasonal fluctuation of hydrological parameters. These results showed API models can be useful to evaluate variability of streamflow in ungauged small forested watersheds in that stream discharge can be simulated using only rainfall data.

Estimation of Flood Discharge Based on Observation Data Considering the Hydrological Characteristics of the Han Stream Basin in Jeju Island (한천유역의 수문학적 특성을 고려한 관측자료 기반 홍수량 산정)

  • Yang, Sung-Kee;Kim, Min-Chul;Kang, Bo-Seong;Kim, Yong-Seok;Kang, Myung-Soo
    • Journal of Environmental Science International
    • /
    • v.26 no.12
    • /
    • pp.1321-1331
    • /
    • 2017
  • This study reviewed the applicability of the existing flood discharge calculation method on Jeju Island Han Stream and compared this method with observation results by improving the mediating variables for the Han Stream. The results were as follows. First, when the rain-discharge status of the Han Stream was analyzed using the flood discharge calculation method of the existing design (2012), the result was smaller than the observed flood discharge and the flood hydrograph differed. The result of the flood discharge calculation corrected for the curve number based on the terrain gradient showed an improvement of 1.47 - 6.47% from the existing flood discharge, and flood discharge was improved by 4.39 - 16.67% after applying the new reached time. In addition, the sub-basin was set separately to calculate the flood discharge, which yielded an improvement of 9.92 - 32.96% from the existing method. In particular, the steepness and rainfall-discharge characteristics of Han Stream were considered in the reaching time, and the sub-basin was separated to calculate the flood discharge, which resulted in an error rate of -8.77 to 8.71%, showing a large improvement of 7.31 - 28.79% from the existing method. The flood hydrograph also showed a similar tendency.

Stream Discharge Estimation by Hydraulic Channel Routing and Stage Measurement (수위관측과 수리학적 하도추적에 의한 하천유량 간접추정)

  • Lee, Sang-Ho;Gang, Sin-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.543-549
    • /
    • 2001
  • This research estimated stream discharges indirectly by hydraulic channel routing. Only stage data from three stage stations and river cross section data were used to estimate Manning roughness coefficients and to compute stream discharges. When the discharges were estimated a stage-stage set of conditions was used for upstream-downstream boundary conditions. The research used the data from the upper Mississippi River. The hydraulic channel routings were performed by DWOPER (operational dynamic wave model). The global optimization program of SCE-UA was used to improve the roughness coefficient estimation module of the modified Newton-Raphson method in DWOPER. The results from SCE-US were better. For the case study of a flood, most estimated discharges except a few show errors within 10%.

  • PDF

Characteristics of Runoff on Southern Area of Jeju Island, Korea (제주도 남부지역의 유출 특성)

  • Kang, Myung-Su;Yang, Sung-Kee;Jung, Woo-Yeol;Kim, Dong-Su
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.591-597
    • /
    • 2013
  • For Kangjeong stream and Akgeun stream in the central part of the southern Jeju Island, on-site discharge estimation was carried out for approximately 10 months (July 2011-April 2012) twice a month on a regular basis by using ADCP (acoustic doppler current profiler) and long term rate of discharge was calculated by using SWAT (soil and water assessment tool) model. The discharge was $0.28-1.30m^3/sec$ for Kangjeong stream and $0.10-1.54m^3/sec$ for Akgeun stream. It showed the maximum in the summer and the minimum in the winter. As a result of parameter sensitivity analysis of SWAT model, CN (NRCS runoff curve number for moisture condition II), SOL_AWC (available water capacity of the soil layer), and ESCO (soil evaporation compensation factor) showed sensitive responses. By using the result, the model was corrected and the rate of discharge was calculated. As a result, the annual discharge rate was 27.12-31.86(%) at the Akgeun basin and 23.55-28.43(%) at the Kangjeong basin.