• 제목/요약/키워드: stream discharge

검색결과 560건 처리시간 0.03초

농촌하천 건천화 특성조사 및 분석 -경기 진위천 중심- (Analysis of Drying Stream Characteristics in the Rural Area)

  • 박기욱;윤여정;주욱종
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.68-73
    • /
    • 2005
  • The purpose of this study are to insure flow rate for rural stream in the rural area. The analysis of drying stream characteristics for two streams(Bong-mu, Wang-jang stream) from field survey data. Also, a study area has been determined, and criteria of estimation has been established : criteria such as, available hydrological data, the size of stream lengths and basin areas and regional characteristics. The spacial analysis is applied to stream slopes for upstream and downstream at weirs, stream networks and ground water pump stations, sinuosity of drying stream. As a result of drying streams survey analysis, drying stream characteristics are followed; levee types are earth and natural, cross sectional shapes are trapezoid, stream bed materials are gravels and sands, facilities in streams are weirs. The cause of the reduction analyzed by investigation of the current status of facilities for agricultural water use. Agricultural reservoirs block up the stream and water does not flow over the reservoirs except by storm. They also discharge water through diversion channels and the water diverted does not flow through the natural stream. Farmers directly take water from the stream by weirs.

  • PDF

Distribution of Freshwater Organisms in the Pyeonggang Stream and Application Effects of Hydrothermal Energy on Variations in Water Temperature by Return Flow in a Stream Ecosystem

  • Dohun Lim;Yoonjin Lee
    • 자원환경지질
    • /
    • 제56권2호
    • /
    • pp.185-199
    • /
    • 2023
  • This study aimed to predict the effects of water ecology on the supply of hydrothermal energy to model a housing complex in Eco Delta Smart Village in Busan. Based on the results, engineering measures were recommended to minimize problems due to possible temperature variations on the supply of hydrothermal energy from the river. The current distribution of fish, benthic macroinvertebrates, and phytoplankton in the Pyeonggang Stream was monitored to determine their effects on water ecology. In the research area, five species and three families of fish were observed. The dominant species was Lepomis macrochirus, and the subdominant species was Carassius auratus. Twenty-five species and 21 families of benthic macroinvertebrates were found. The distribution of aquatic insects was poor in this area. The dominant species were Chironomidae sp., Lymnaea auricularia, Appasus japonicus, and Caridina denticulata denticulata in February, May, July, and October. Dominant phytoplankton were Aulacoseira ambigua and Nitzschia palea in February and May. Microcystis sp. was dominant in July and October. The health of the ecology the Pyeonggang Stream was assessed as D (bad) according to the benthic macroinvertebrate index (BMI). Shifts in the location of the discharge point 150 m downstream from intake points and discharge through embedded rock layer after adding equal amounts of stream water as was taken at the beginning were suggested to minimize water temperature variations due to the application of hydrothermal energy. When the scenario (i.e., quantity of water intake and dilution water, 1,600 m3/d and water temp. difference ±5 ℃) was realized, variations in water temperature were assessed at -0.19 ℃ and 0.59 ℃ during cooling and heating, respectively, at a point 10 m downstream. Water temperatures recorded at -0.20 ℃ and 0.68 ℃ during cooling and heating, respectively, at a point 10 m upstream. All stream water temperatures after the application of hydrothermal energy recovered within 24 hours. Future work on the long-term monitoring of ecosystems is suggested, particularly to analyze the influence of the water environment on hydrothermal energy supply operations.

한강수계 유량곡선식 개발 및 수질오염물질 항목간 상관성 분석에 관한 연구- 벽계천 중심으로 - (Study on the Analysis of Development of Stage-Discharge Curve for Han River and Correlation between Items of Water Pollutants- Focused on Byeokgyeo Stream -)

  • 홍성호;반종석;전항배
    • 한국물환경학회지
    • /
    • 제28권3호
    • /
    • pp.394-400
    • /
    • 2012
  • We drew the stage-discharge relations of Byeokgye Stream, located in Yangpyeong-gun, Gyeonggi-do, and analysed the correlation between items of water pollutants by measuring the flow rate and water pollutants thirty-four times from April 2010 to December 2010. The results showed that it tended to be low water season from April to June and from October and December, while tending to be water season from July to September. The average flow rate was $2.137\;m^3/sec:\;0.464\;m^3/sec$ in low water season and $13.970\;m^3/sec$ in high water season. The stage-discharge curve thereon was $Q=40.107{\times}(h-1.200)^{2.877}$. As to the correlations, the correlation between the water temperature and COD was 0.58, and the correlations of SS with BOD and COD were 0.46 and 0.40 respectively. The correlation between SS and T-P was 0.73, showing higher than other items.

농촌 소유역에서의 비점오염물질 유출 특성 - 충남 공주시 정안면 고성리 지역을 대상으로 - (Characteristics of Non-Point Pollutants Discharge in a Small Rural Watershed)

  • 김진호;한국헌;류종수;임혁진;이경도;권순국
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.552-556
    • /
    • 2005
  • This study was conducted to identify the characteristics of non-point pollutants discharge in a small Rural watershed. For this purpose, the typical rural area in Gongju city was selected as a research site. Water quality and water quantity data in the stream and the precipitation of the watershed were analyzed periodically from May 1 to August 31 in 2005. Also, pollutant loads were estimated using these data. As a result, the mean concentrations of BOD, TN and TP in the stream were 3.16, 3.20, 0.236 mg/L rainy season and 0.93, 2.75, 0.058 mg/L in normal survey season respectively. The estimation of non-point pollutants discharge loads were shown that BOD was 5,154.2kg, T-N was 9,164.7kg, T-P was 308.4kg, and SS was 117,163.2kg from July to August. That means above of 90% of non-point pollutants discharge was occurred in rainy season.

  • PDF

하수처리장 분산방류에 의한 방류수역의 수질개선효과 (Improvement Effect of Water Quality along the Water Discharged Area by Water Dispersion from the Sewage Disposal Plant)

  • 김동수;박종태;김용구;박성천
    • 한국환경과학회지
    • /
    • 제17권1호
    • /
    • pp.113-118
    • /
    • 2008
  • [ $6{\sim}13mg/L$ ] base water concentration on monthly BOD has been kept at the Geukrak bridge point for this research target and it indicates the water quality under the existed rank. Due to this present condition of water quality, the demage of ecology from the upper stream to the lower one of the bridge could be conjectured. Moreover, nonstructural extinction of the ecology seems to have gotten worse between both the streams of Yeoungsan River. On this research, eco-corridor between the upper stream and the lower stream of the river should be ensured, the ecological demage needs to be cut off, a dispersed discharge method which the existed method of the 1st sewage plant in Gwangju was enhanced to should be inducted for the procuring of various water ecosystem, and the conditions by the scenario suggested from this research could be applied to a water quality model. then, analysis the improvement effect of the water quality adjacent the river. From the test result, Case3-Type1 scenario is thought to be the best one. From the test result with Case3-Type1 when the concentrated discharge was never done, 0.07 mg/L of BOD concentration was increased at the lower stream where Yeoungbon B point (Haksan Bridge) is but the water improvement effect of $0.24{\sim}2.87mg/L$ is thought to have been done at the area of water deterioration.

수위-유량자료가 부재한 자갈하천의 조도계수 산정에 관한 연구 (A Study on Roughness Coefficient Estimations in Gravel Bed Stream without Water Level-Discharge Data)

  • 이신재;박상우
    • 한국수자원학회논문집
    • /
    • 제39권12호
    • /
    • pp.985-996
    • /
    • 2006
  • 본 연구는 자갈하천에서 하상에 분포하는 입자에 작용하는 전단력을 이용하여 등가조도를 산정할 수 있는 모형을 개발하였다. 산정된 등가조도는 수위-유량자료가 부재한 하천에서 유량에 대한 수위를 산정하고 조도계수를 산정하는데 이용하였다. 대상하천은 섬진강의 중 하류부인 구례수위표와 송정수위표 구간으로 선정하였다. 등가조도는 개발된 모형에 의해 구례수위표지점에서 0.194m가 산정되었다. 산정된 등가조도를 흐름모형에 적용하여 계산된 수위유량자료를 관측된 자료와 비교한 결과 6% 이내의 오차를 보였다. 조도계수는 대상구간에 대해 부정류 해석을 실시하여 유량규모별로 계산된 수위와 관측된 수위에 대해 산정하였다. 그 결과 관측된 수위와 계산된 수위에 의해 산정된 조도계수는 $0{\sim}0.002$의 오차를 보였고, 조도계수의 가변성도 고려할 수 있었다.

한국주요빙계의 소유역에 대한 순간단위권 유도에 관한 연구 (I) (Studies on the Derivation of the Instantaneous Unit Hydrograph for Small Watersheds of Main River Systems in Korea)

  • 이순혁
    • 한국농공학회지
    • /
    • 제19권1호
    • /
    • pp.4296-4311
    • /
    • 1977
  • This study was conducted to derive an Instantaneous Unit Hydrograph for the accurate and reliable unitgraph which can be used to the estimation and control of flood for the development of agricultural water resources and rational design of hydraulic structures. Eight small watersheds were selected as studying basins from Han, Geum, Nakdong, Yeongsan and Inchon River systems which may be considered as a main river systems in Korea. The area of small watersheds are within the range of 85 to 470$\textrm{km}^2$. It is to derive an accurate Instantaneous Unit Hydrograph under the condition of having a short duration of heavy rain and uniform rainfall intensity with the basic and reliable data of rainfall records, pluviographs, records of river stages and of the main river systems mentioned above. Investigation was carried out for the relations between measurable unitgraph and watershed characteristics such as watershed area, A, river length L, and centroid distance of the watershed area, Lca. Especially, this study laid emphasis on the derivation and application of Instantaneous Unit Hydrograph (IUH) by applying Nash's conceptual model and by using an electronic computer. I U H by Nash's conceptual model and I U H by flood routing which can be applied to the ungaged small watersheds were derived and compared with each other to the observed unitgraph. 1 U H for each small watersheds can be solved by using an electronic computer. The results summarized for these studies are as follows; 1. Distribution of uniform rainfall intensity appears in the analysis for the temporal rainfall pattern of selected heavy rainfall event. 2. Mean value of recession constants, Kl, is 0.931 in all watersheds observed. 3. Time to peak discharge, Tp, occurs at the position of 0.02 Tb, base length of hlrdrograph with an indication of lower value than that in larger watersheds. 4. Peak discharge, Qp, in relation to the watershed area, A, and effective rainfall, R, is found to be {{{{ { Q}_{ p} = { 0.895} over { { A}^{0.145 } } }}}} AR having high significance of correlation coefficient, 0.927, between peak discharge, Qp, and effective rainfall, R. Design chart for the peak discharge (refer to Fig. 15) with watershed area and effective rainfall was established by the author. 5. The mean slopes of main streams within the range of 1.46 meters per kilometer to 13.6 meter per kilometer. These indicate higher slopes in the small watersheds than those in larger watersheds. Lengths of main streams are within the range of 9.4 kilometer to 41.75 kilometer, which can be regarded as a short distance. It is remarkable thing that the time of flood concentration was more rapid in the small watersheds than that in the other larger watersheds. 6. Length of main stream, L, in relation to the watershed area, A, is found to be L=2.044A0.48 having a high significance of correlation coefficient, 0.968. 7. Watershed lag, Lg, in hrs in relation to the watershed area, A, and length of main stream, L, was derived as Lg=3.228 A0.904 L-1.293 with a high significance. On the other hand, It was found that watershed lag, Lg, could also be expressed as {{{{Lg=0.247 { ( { LLca} over { SQRT { S} } )}^{ 0.604} }}}} in connection with the product of main stream length and the centroid length of the basin of the watershed area, LLca which could be expressed as a measure of the shape and the size of the watershed with the slopes except watershed area, A. But the latter showed a lower correlation than that of the former in the significance test. Therefore, it can be concluded that watershed lag, Lg, is more closely related with the such watersheds characteristics as watershed area and length of main stream in the small watersheds. Empirical formula for the peak discharge per unit area, qp, ㎥/sec/$\textrm{km}^2$, was derived as qp=10-0.389-0.0424Lg with a high significance, r=0.91. This indicates that the peak discharge per unit area of the unitgraph is in inverse proportion to the watershed lag time. 8. The base length of the unitgraph, Tb, in connection with the watershed lag, Lg, was extra.essed as {{{{ { T}_{ b} =1.14+0.564( { Lg} over {24 } )}}}} which has defined with a high significance. 9. For the derivation of IUH by applying linear conceptual model, the storage constant, K, with the length of main stream, L, and slopes, S, was adopted as {{{{K=0.1197( {L } over { SQRT {S } } )}}}} with a highly significant correlation coefficient, 0.90. Gamma function argument, N, derived with such watershed characteristics as watershed area, A, river length, L, centroid distance of the basin of the watershed area, Lca, and slopes, S, was found to be N=49.2 A1.481L-2.202 Lca-1.297 S-0.112 with a high significance having the F value, 4.83, through analysis of variance. 10. According to the linear conceptual model, Formular established in relation to the time distribution, Peak discharge and time to peak discharge for instantaneous Unit Hydrograph when unit effective rainfall of unitgraph and dimension of watershed area are applied as 10mm, and $\textrm{km}^2$ respectively are as follows; Time distribution of IUH {{{{u(0, t)= { 2.78A} over {K GAMMA (N) } { e}^{-t/k } { (t.K)}^{N-1 } }}}} (㎥/sec) Peak discharge of IUH {{{{ {u(0, t) }_{max } = { 2.78A} over {K GAMMA (N) } { e}^{-(N-1) } { (N-1)}^{N-1 } }}}} (㎥/sec) Time to peak discharge of IUH tp=(N-1)K (hrs) 11. Through mathematical analysis in the recession curve of Hydrograph, It was confirmed that empirical formula of Gamma function argument, N, had connection with recession constant, Kl, peak discharge, QP, and time to peak discharge, tp, as {{{{{ K'} over { { t}_{ p} } = { 1} over {N-1 } - { ln { t} over { { t}_{p } } } over {ln { Q} over { { Q}_{p } } } }}}} where {{{{K'= { 1} over { { lnK}_{1 } } }}}} 12. Linking the two, empirical formulars for storage constant, K, and Gamma function argument, N, into closer relations with each other, derivation of unit hydrograph for the ungaged small watersheds can be established by having formulars for the time distribution and peak discharge of IUH as follows. Time distribution of IUH u(0, t)=23.2 A L-1S1/2 F(N, K, t) (㎥/sec) where {{{{F(N, K, t)= { { e}^{-t/k } { (t/K)}^{N-1 } } over { GAMMA (N) } }}}} Peak discharge of IUH) u(0, t)max=23.2 A L-1S1/2 F(N) (㎥/sec) where {{{{F(N)= { { e}^{-(N-1) } { (N-1)}^{N-1 } } over { GAMMA (N) } }}}} 13. The base length of the Time-Area Diagram for the IUH was given by {{{{C=0.778 { ( { LLca} over { SQRT { S} } )}^{0.423 } }}}} with correlation coefficient, 0.85, which has an indication of the relations to the length of main stream, L, centroid distance of the basin of the watershed area, Lca, and slopes, S. 14. Relative errors in the peak discharge of the IUH by using linear conceptual model and IUH by routing showed to be 2.5 and 16.9 percent respectively to the peak of observed unitgraph. Therefore, it confirmed that the accuracy of IUH using linear conceptual model was approaching more closely to the observed unitgraph than that of the flood routing in the small watersheds.

  • PDF

Bayesian 기반 Multi-Segmented 곡선식을 활용한 수위-유량 곡선의 불확실성 분석 (A development of rating-curve using Bayesian Multi-Segmented model)

  • 김진영;김진국;이재철;권현한
    • 한국수자원학회논문집
    • /
    • 제49권3호
    • /
    • pp.253-262
    • /
    • 2016
  • 수위-유량 관계곡선(rating curve)은 수위표에서 관측된 수위 및 유량을 이용하여 만들어진 회귀분석식을 의미하며, 하천의 수위를 유량으로 환산하는 방법으로 일반적으로 활용되고 있다. 그러나 수위-유량 관계곡선식에서 저수위와 고수위와 분리 및 매개변수 추정에 있어 불확실성을 고려한 해석은 이루어지지 않고 있다. 이러한 이유로 본 연구에서는 수위-유량 관계곡선식에서 매개변수 추정 및 저 고수위 분리시 발생하는 문제점을 개선하기 위해 Bayesian 기법을 도입하였으며, 수위-유량 관계곡선식의 매개변수의 추정과 더불어 불확실성을 정량화 하는데 목적을 두었다. 이와 더불어 Bayesian 모형 기반 Multi-Segmented 수위-유량 관계곡선(Bayesian M-S)을 활용하여 저 고수위를 분리할 수 있는 새로운 수위-유량 관계곡선을 개발하고 기존 수위-유량 관계곡선과 비교 분석을 실시하였다. 그 결과 본 연구에서 개발한 Bayesian M-S 기법이 기존 수위-유량 관계곡선식 보다 개선된 결과를 도출할 수 있었으며, 수위-유량 관계곡선식의 신뢰구간을 제시하는데 유리한 것을 확인할 수 있었다.