• Title/Summary/Keyword: stream assessment

Search Result 616, Processing Time 0.044 seconds

Specificity of Majangcheon (Chuncheon) Based on Fish Community (어류군집에 따른 마장천(춘천)의 특이성)

  • Lee, Hankyu;Lee, Kwangyeol;Jang, Changwon;Lee, Jaeyong;Cheon, Jaeryong;Choi, Jaeseok
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.2
    • /
    • pp.129-140
    • /
    • 2019
  • Majangcheon is a small agricultural stream which is located in Chuncheon-si, Gangwon-do. To understand ecological characteristics of Majangcheon as biological habitats, we surveyed its physical environment and fishes from June 2016 to September 2016. The altitudinal difference between lowest and highest point of the stream was 3 meters and the first-order stream under a map drawn on a scale of 1:25,000. The flow rate of stream was slow in overall with $0.09-0.48m{\cdot}s^{-1}$. More than 50% of clay were found in all points except for the point St. 3 in the riverbed structure surveyed. A total of 2,532 individuals of 22 species in nine families were collected from Majangcheon. Of them, stillwater-living species (Acheilognathinae and Carassius auratus) and floating species (Zacco platypus and Oryzias sinensis) were mainly collected. In Majangcheon, thus, both of stillwater-living and floating fishes were specifically coexisted. The correspondence analysis, based on fishes collected from Majangcheon and past research, showed that Majangcheon is closer to the flat streams in Gyeonggi-do rather than the mountainous streams in Gangwon-do but it appeared as an independent group from those of two regions. As a result, Majangcheon is a stream with specificity of fish community.

Spatial Characterization of Water Pollution in the Urban Stream Watershed (Gap Stream), Korea (도시하천(갑천) 유역에서 수질오염의 공간적 특성)

  • Lee, Heung-Soo;Hur, Jin;Jeong, Seon-A;Hwang, Soon-Jin;Shin, Jae-Ki
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.943-951
    • /
    • 2006
  • Spatial distribution of water pollution in the Gap Stream was investigated from October to November, 2005. Sampling was conducted three times including effluents discharged from a wastewater treatment plant (WWTP) and a dam reservoir during the low-flow period. As a typical urban stream, total nitrogen and inorganic nitrogen concentrations increased toward downstream. Ammonia concentration was the highest in the treated water of the wastewater treatment plant and the lowest nitrate concentration was found in the effluent of the dam reservoir. A part of soluble reactive phosphorous (SRP) in total phosphorous was 22~54% in the upstream reach of WWTP in the Gap Stream whereas 68~73% in the downstream reach. Mean chlorophyll-a concentration ranged from 1.6 to $11.0{\mu}g/L$ and it tends to increase toward downstream except for WWTP effluent. As expected, untreated wastewater and WWTP effluent were suggested as the major sources of water pollution in the Gap Stream. In this study, the water pollution of the Gap Stream is a significant undergoing typical eutrophication, caused by excessive phosphorus and nitrogen nutrients from WWTP located in the watershed. As a result, the critical factor for the water pollution was evaluated to dissolved inorganic nitrogen and phosphorus nutrients. Particularly, SRP is a most important for the eutrophication. It suggest that may occur in the most urban streams of Korean peninsula. Therefore, because the necessity of water pollution management in the urban stream, inorganic N and P nutrients should be included as an essential component of water quality criteria in the advanced water quality project of Korean Government by enforcing of water quality assessment and total maximum daily loads (TMDLs).

NON-POINT SOURCE POLLUTANT MODELING IN USING GIS ASSESSMENT IN STREAM NETWORK AND THE IRRIGATION REGION

  • Ju-Young;Kutty Arvind
    • Water Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.147-156
    • /
    • 2004
  • Recently, the population growth, industrial and agricultural development are rapidly undergoing in the Lower Rio Grande Valley (LRGV) in Texas. The Lower Rio Grande Valley (LRGV) composed of the 4 counties and three of them are interesting for Non-point and point source pollutant modeling: Starr, Cameron, and Hidalgo. Especially, the LRGV is an intensively irrigation region, and Texas A&M University Agriculture Program and the New Mexico State University College of Agriculture applied irrigation district program (Guy Fipps and Craig Pope, 1998), projects in GIS and Hydrology based agricultural water management systems and assessment of prioritized protecting stream network, water quality and rehabilitation based on water saving potential in Rio Grande River. In the LRGV region, where point and non-point sources of pollution may be a big concern, because increasing fertilizers and pesticides use and population cause. This project objective seeks to determine the accumulation of non-point and point source and discuss the main impacts of agriculture and environmental concern with water quality related to pesticides, fertilizer, and nutrients within LRGV region. The GIS technique is widely used and developed for the assessment of non-point source pollution in LRGV region. This project shows the losses in kg/$km^2$/year of BOD (Biological Oxygen Demand), TN (total Nitrogen) and TP (total phosphorus) in the runoff from the surface of LRGV.

  • PDF

Fish Exposure and In Situ Field Pilot Tests in the Abandoned Mine Drainage for a Stream Restoration

  • Bae, Dae-Yeul;Kim, Ju-Yong;Kim, Kyoung-Woong;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.4
    • /
    • pp.560-568
    • /
    • 2007
  • The objectives of this study were to analyze ecological effects on effluents from the Sagok Stream (Chonnam province) as an abandoned mine drainage through necropsy-based health assessments and fish exposure tests, and to conduct In situ field pilot tests for restoration of stream water. Also, we analyzed water quality including general parameters and heavy metals. The tests were performed three times on April 2005, April 2006, and April 2007. Also, we constructed a reactor facility in the outflowing point of the abandoned mine for the remediation of AMD wastewater. In lab test, death rates in all three treatments were ${\geq}50%$ in the experiments. Necropsybased fish tissue assessments using the Health Assessment Index (HAI), indicated that the most frequently damaged tissue was liver (average: 20.8). Values of Health Assessment Index were lower in the control than any other treatments of T1, T2, and T3 and three treatments showed a distinct toxicity impacts by the AMD. In situ lethal test, concentration of Fe, Al and Zn decreased particularly by 85%, 99% and 94%, respectively through the disposal facility. Values of pH, ranged from 3.1 to 7.0, increased by 2.3 fold (mean=5.1) along with the reduction of metal contents. All fishes in P1 cage died 100% on 3 days later after the experimental setting, while all fishes in the P6 died 100% on 9 days later. Overall, these results evidently provide a key methodology for pilot test using the disposal facility and also clarify the toxicity of AMD once again, so this approach used in the pilot facilities here may reduce the acidic and toxic effects in the abandoned mining drainage.

A Study on the Evaluation Method of Close-to-Nature Stream Improvement Works (자연 친화적인 하천 정비사업의 평가방법에 관한 연구)

  • Kim, Seok-Gyu;Kim, Chul
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.7
    • /
    • pp.503-510
    • /
    • 2007
  • In the area of such a nature-friendly stream improvement, it is not established yet which engineering method is suitable for stream environment, due to lack of technology. Therefore, although nature-friendly stream improvement was done with expensive engineering method, the effect has not been fully confirmed, which results from the absence of overall valuation tool of stream improvement. In this regard, it is necessary to develop and apply comprehensive and diverse valuation methods covering stream functions to the analysis of stream improvement. In this study, we collected data from years' of monitoring on the Gyeongcheon river, which is located in Sunchang-eup, Jeollabuk-do and recently underwent an nature-friendly stream improvement work. Based on the data, we developed a series of valuation methods such as stream naturalness evaluation, life cycle evaluation, amenity evaluation, and economic benefit analysis to consider the environmental function of stream from a comprehensive perspective. Stream naturalness evaluation is a quantitative analysis of how natural a stream is, and includes additional valuation items such as ecosystem and water quality for the purpose of overall valuation, unlike existing research focusing on physical elements and structural characteristics of a stream. We developed a method of stream valuation with life cycle assessment to river reorganization project. Amenity evaluation method was developed as a means to analyze residents' satisfaction with stream improvement through questionnaires. Economic benefit analysis was developed as a means to determine the attributes of environmental water supply, ecosystem, river maintenance, and water quality and predict economic benefits using contingent valuation method (CVM) and multi-attribute utility analysis (MAUA) method in order to analyze economic benefits brought in by stream improvement. It is considered that the four methods developed in this study make possible to conduct an overall and quantitative analysis of stream improvement.