• Title/Summary/Keyword: strains G5 and G7H

Search Result 241, Processing Time 0.031 seconds

A Study on the Production of Yeast Utilizing Ethanol as a Sole Carbon Source (Ethanol 이용 미생물에 의한 단세포 단백질 생산에 관한연구)

  • Lee, Ke-Ho;Ha, Jin-Hong
    • Applied Biological Chemistry
    • /
    • v.16 no.1
    • /
    • pp.1-11
    • /
    • 1973
  • In order to obtain the basic informations on the production of single cell protein from ethanol, 145 yeast strains utilizing ethanol as a sole carbon source were isolated from 32 soil samples in Korea. A yeast strain showing the highest cell yield among the isolated strains was selected and identified. The optimum culture condition, utilization of other carbon sources and the cultural characteristics for the selected yeast, and the chemical analysis of the yeast cell composition, and utilization of ethanol by the selected yeast were investigated. All the culture was carried out in the shaking flasks. The results obtained were as follows: 1. The selected yeast strain was identified as Debaryomyces nicotianae-SNU 72. 2. The optimum composition of the medium for the selected yeast is : Ethanol 40 ml, Urea 0.5 g, Potassium phosphate (dibasic) 0.5 g, Ammoium phosphate (monobasic) 0.15 g, Magnesium sulfate 0.05 g, Calcium chloride 0.01g, Yeast extract 0.005 g, Tap water 1000 ml. 3. The optimum pH was 5.0-5.5, the optimum temperature $30-33^{\circ}C$ and the aerobic state was unimportant. 4. Utilization of methanol, n-propanol, iso-propanol, n-butanol, iso-butanol, tert-amyl alcohol and acetic acid by the selected yeast was very weak. So substitution of the subtrate was thought to be impossible. 5. Studies on the propagation of the yeast cells showed that the lag phase of the yeast cells lasted 16 hours, and the logarithmic growth phase extended 16 to 28 hours. The specific growth rate was about $0.19\;hr^{-1}$ and the doubling time was 3.6 hours during the logarithmic growth phase. 6. As the result of the chemical analysis of the dry yeast cells, the content rate of the crude protein was 55.19 %, the content of others was similar to the average content of the yeast component. 7. After 34 hours cultivation, under the optimum culture condition investigated, the dry cell yield against the amount of the added ethanol was 53.4 % (W/V%), the dry cell yield against the amount of the utilized ethanol was 73.6 % (W/V%), the evaporation rate of ethanol was about 19.1 %.

  • PDF

Isolation and Characterization of Lactobacillus buchneri Strains with High ${\gamma}$-Aminobutyric Acid Producing Capacity from Naturally Aged Cheese

  • Park, Ki-Bum;Oh, Suk-Heung
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.86-90
    • /
    • 2006
  • Two lactic acid bacteria (LAB) with high ${\gamma}$-aminobutyric acid (GABA)-producing capacity were isolated from naturally aged cheese. Examination of the biochemical features using an API kit indicated that the two strains belonged to Lactobacillus. They were gram positive, rod-type bacteria, and fermented arabinose, melezitose, melibiose and xylose, but did not utilize cellobiose or trehalose. 16S rDNA sequencing analysis confirmed that they were Lactobacillus buchneri and Lactobacillus sp. They were accordingly named as Lactobacillus buchneri OPM-1 and Lactobacillus sp. OPM-2, and could produce GABA from MRS broth supplemented with 10 g/L of monosodium glutamate (MSG) at a productivity of 91.7 and 116.7 mg/L/hr, respectively. Cell extracts of L. buchneri OPM-1 and Lactobacillus sp. OPM-2 showed glutamate decarboxylase (GAD) activity, for which the optimum pH and temperature were 5.5 and $30^{\circ}C$, respectively.

Xylanolytic and Ethanologenic Potential of Gut Associated Yeasts from Different Species of Termites from India

  • Tiwari, Snigdha;Avchar, Rameshwar;Arora, Riya;Lanjekar, Vikram;Dhakephalkar, Prashant K.;Dagar, Sumit S.;Baghela, Abhishek
    • Mycobiology
    • /
    • v.48 no.6
    • /
    • pp.501-511
    • /
    • 2020
  • Xylophagous termites are capable of degrading lignocellulose by symbiotic gut microorganisms along with the host's indigenous enzymes. Therefore, the termite gut might be a potential niche to obtain natural yeasts with celluloytic, xylanolytic and ethanologenic traits required for bioethanol production from lignocellulosic biomass. In this study, we cultured 79 yeasts from three different termites viz. Coptotermes heimi, Odontotermes javanicus and Odontotermes obesus. After suitable screening methods, we identified 53 yeasts, which belonged to 10 genera and 16 different species of both ascomycetous and basidiomycetous yeasts. Most yeasts in the present study represent their first-ever isolation from the termite gut. Representative strains of identified yeasts were evaluated for their cellulolytic, xylanolytic, and ethanologenic abilities. None of the isolates showed cellulase activity; 22 showed xylanolytic activity, while six produced substantial quantities of ethanol. Among xylanolytic cultures, Pseudozyma hubeiensis STAG 1.7 and Hannaella pagnoccae STAG 1.14 produced 1.31 and 1.17 IU of xylanase. Among ethanologenic yeasts, the strains belonging to genera Candida and Kodamaea produced high amount of ethanol. Overall, highest ethanol level of 4.42 g/L was produced by Candida tropicalis TS32 using 1% glucose, which increased up to 22.92 g/L at 35 ℃, pH 4.5 with 5% glucose. Fermentation of rice straw hydrolysate gave 8.95 g/l of ethanol with a yield of 0.42 g/g using the strain TS32. Our study highlights the gut of wood-feeding termites as a potential source of diverse yeasts that would be useful in the production of xylanase and bioethanol.

Effects of essential oil (blended and single essential oils) on anti-biofilm formation of Salmonella and Escherichia coli

  • Oh, S.Y.;Yun, W.;Lee, J.H.;Lee, C.H.;Kwak, W.K.;Cho, J.H.
    • Journal of Animal Science and Technology
    • /
    • v.59 no.2
    • /
    • pp.4.1-4.5
    • /
    • 2017
  • Background: Biofilms were the third-dimensional structure in the solid surface of bacteria. Bacterial biofilms were difficult to control by host defenses and antibiotic therapies. Escherichia coli (E. coli) and Salmonella were popular pathogenic bacteria that live in human and animal intestines. Essential oils are aromatic oily liquids from plant materials and well known for their antibacterial activities. Method: This study was conducted to determine effect of essential oil on anti-biological biofilm formation of E. coli and Salmonella strains in in vitro experiment. Two kinds of bacterial strains were separated from 0.2 g pig feces. Bacterial strains were distributed in 24 plates per treatment and each plates as a replication. The sample was coated with a Bacterial biofilm formation was. Result: Photographic result, Escherichia coli (E. coli) and Salmonella bacteria colony surface were thick smooth surface in control. However, colony surface in blended and single essential oil treatment has shown crack surface layer compared with colony surfaces in control. Conclusion: In conclusion, this study could confirm that essential oils have some interesting effect on anti-biofilm formation of E. coli and Salmonella strains from pig feces.

Xylanase Production by Mixed Culture Using Crude Hemicellulose from Rice Straw Black Liquor and Peat Moss as an Inert Support

  • Shata, Hoda Mohamed Abdel Halim;El-Deen, Azza Mohmed Noor;Nawwar, Galal Abdel Moen;Farid, Mohmed Abdel Fattah
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.4
    • /
    • pp.313-320
    • /
    • 2014
  • Black liquor (BL) is a by-product of rice straw pulping process. It is a low costs raw material for production value-adding proteins and enzymes, which has been paid more and more attention to reduce its environmental pollution. Mixed cultures of micelial fungi, Trichoderma reesei Northern Regional Research Laboratory (NRRL)11236, Trichoderma reesei NRRL 6165 and Aspergillus niger strains NRC 5A, NRC 7A, and NRC 9A were evaluated for their ability to produce xylanase using crude hemicellulose (CHC) prepared from BL and peat moss as an inert support under solid state fermentation (SSF). The most potent strains, A. niger NRC 9A (818.26 U/g CHC) and T. reesei NRRL 6165 ($100.9{\pm}57.14$ U/g CHC), were used in a mixed culture to enhance xylanase production by co-culturing under SSF. In the mixed culture, xylanase production ($1070.52{\pm}12.57$ U/g CHC) was nearly1.3 and 10.6-fold increases over the activities attained in their monocultures, A. niger NRC 9A and T. reesei NRRL 6165, respectively. Optimization of the culture parameters of the mixed culture SSF process, concentration of ammonium sulfate and corn steep liquor, CHC/peat moss ratio, inoculum size and ratios of the two strains, initial pH value, initial moisture content and incubation time, exhibited a significant increase ($2414.98{\pm}84.02$ U/g CHC) in xylanase production than before optimization.

Physicochemical and Microbiological Properties of Ginseng-Whey Beverages (인삼 유청음료의 이화학적 및 미생물학적 특성)

  • 기해진;홍윤호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.2
    • /
    • pp.208-214
    • /
    • 1993
  • Ginseng-whey beverages were prepared with rennet whey, ginseng, sweetener, honey and Japanese apricot, inoculated with different strains of lactic acid bacteria or unfermented partly. The samples were stored at 4$^{\circ}C$ or 30$\pm$1$0^{\circ}C$ and then physicochemical and microbiological properties were investigated. The yield of whey was 78.8%. The pH-values reduced and acidities increased during the storage period. The contents of solid-substances, ash and lipid in ginseng-whey beverages were 7.90~8.20%, 0.62~0.66% and 0.16%, respectively. The protein contents of ginseng-whey beverages were 0.42~0.56% and the contents were not changed during the storage period. The lactose contents of fermented beverages were higher than those of unfermented beverages. During the storage period (1~5 weeks), the ranges of D(-) - and L(+)- lactic acid contents in fermented ginseng-whey beverages (17.3~156.1 mg/100g, 347.3~1894.2mg/100g) were higher than those of unfermented ginseng-whey beverages (6.2~82.8mg/100g, 7.1~885.5mg/100g). The contents of total saponin in unfermented sample and fermented sample (Lac. casei sub-sp. casei+Str. salivarius sub-sp. thermophilus) were increased during the storage period. But, those of the fermented sample(Lac. acidophilus+Lac. delbrueckii sub-sp. bulgaricus) were reduced. In the electrophoretic results of ginseng-whey beverages, an $\alpha$-lactalbumin and a $\beta$-lactoglobulin bands were shown apparently and there were no changes observed during the storage period. During the storage period (1~3 week) the coliform was not detected and total plate counts and psychrotrophs were increased according to the storage period.

  • PDF

Determination of Optimized Growth Medium and Cryoprotective Additives to Enhance the Growth and Survival of Lactobacillus salivarius

  • Yeo, Soyoung;Shin, Hee Sung;Lee, Hye Won;Hong, Doseon;Park, Hyunjoon;Holzapfel, Wilhelm;Kim, Eun Bae;Huh, Chul Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.718-731
    • /
    • 2018
  • The beneficial effects of lactic acid bacteria (LAB) have been intensively investigated in recent decades with special focus on modulation of the host intestinal microbiota. Numerous discoveries of effective probiotics are driven by a significantly increasing demand for dietary supplements. Consequently, technological advances in the large-scale production and lyophilization are needed by probiotic-related industries for producing probiotic LAB for commercial use. Our study had a dual objective, to determine the optimum growth medium composition and to investigate appropriate cryoprotective additives (CPAs) for Lactobacillus salivarius, and compare its responses with other Lactobacillus species. The one-factor-at-a-time method and central composite design were applied to determine the optimal medium composition for L. salivarius cultivation. The following composition of the medium was established (per liter): 21.64 g maltose, 85 g yeast extract, 1.21 ml Tween 80, 6 g sodium acetate, $0.2g\;MgSO_4{\cdot}7H_2O$, $0.02g\;MnSO_4{\cdot}H_2O$, $1g\;K_2HPO_4$, $1.5g\;KH_2PO_4$, $0.01g\;FeSO_4{\cdot}7H_2O$, and 1 g sodium citrate. A cryoprotective additive combination comprising 10% (w/v) skim milk and 10% (w/v) sucrose supplemented with 2.5% (w/v) sodium glutamate was selected for L. salivarius, and its effectiveness was confirmed using culture-independent methods in the freeze-dried cells of the Lactobacillus strains. In conclusion, the optimized medium enhanced the species-specific cultivation of L. salivarius. On the other hand, the cryoprotective effects of the selected CPA mixture may also be dependent on the bacterial strain. This study highlights the necessity for precise and advanced processing techniques for large-scale production of probiotics in the food and feed industries.

Egg Quality Traits and Their Correlations in 12 Strains of Korean Native Chicken (토종닭 12계통 난질의 일반능력 및 상관관계 분석)

  • Kim, Kigon;Kwon, Il;Choo, Hyojun;Park, Byoungho;Cha, Jaebeom
    • Korean Journal of Poultry Science
    • /
    • v.47 no.3
    • /
    • pp.181-188
    • /
    • 2020
  • In this study, sixteen egg quality traits, including egg weight, albumen weight, yolk weight, eggshell weight, albumen weight ratio, yolk weight ratio, eggshell weight ratio, yolk color, eggshell color, egg height, egg width, shape index, albumen height, Haugh unit, eggshell thickness, and eggshell strength were investigated in 12 strains of Korean native chicken using 600 eggs from birds at 38 weeks of age. Results showed that the Korean White Leghorn F strain had the highest egg weight of 62.7 g and the lowest (47.5 g) was observed in the Korean native chicken W strain. The Haugh unit was significantly different between strains. The mean Haugh unit for Korean native chicken ranged between 84.2 (L strain) and 76.0 (F strain), with an overall average of 79.9. Eggshells were the thinnest in Korean Rhode Island Red C and D strains (0.342 mm), whereas the highest eggshell thickness (0.393 mm) was observed in the Korean White Leghorn K strain. Korean Rhode Island Red C and D strains had low egg strength compared to that of other strains. Korean Cornish and Korean native chicken showed significant differences in egg quality traits between strains within breeds. Positive correlation coefficients were observed between egg weight and egg quality traits. The traits for color showed zero or low correlations with most egg quality traits. Egg shape index showed no correlation with most egg quality traits. Albumen height and the Haugh unit showed a positive correlation with albumen traits. Eggshell strength showed a positive correlation with eggshell traits.

Enhancement of Herboxidiene Production in Streptomyces chromofuscus ATCC 49982

  • Jha, Amit Kumar;Lamichhane, Janardan;Sohng, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.52-58
    • /
    • 2014
  • Structurally, herboxidiene contains the tetrahydropyran acetic acid moiety and a side chain including a conjugated diene, and has been isolated from Streptomyces chromofuscus ATCC 49982. Its production was significantly elevated nearly 13.5-fold (0.74 g/l) in a medium supplemented with glycerol (medium No. 6A6), and was more efficacious (1.08 g/l; 19.8-fold) in fed-batch fermentation at 36 h in medium No. 6A6, from Streptomyces chromofuscus. For further enhancement, regulatory genes metK1-sp and afsR-sp from Streptomyces peucetius were overexpressed using an expression vector, pIBR25, and similarly ACCase from Streptomyces coelicolor and two genes, metK1-sp and afsR-sp, were also overexpressed using an integration vector, pSET152, under the control of the strong $ermE^*$ promoter in Streptomyces chromofuscus. Only the recombinant strains S. chromofuscus SIBR, S. chromofuscus GIBR, and S. chromofuscus AFS produced more herboxidiene than the parental strain in optimized medium No. 6A6 with an increment of 1.32-fold (0.976 g/l), 3.85-fold (2.849 g/l), and 1.7-fold(1.258 g/l) respectively.

Formation and Fusion of Protoplasts from the Cellulolytic Fungi, Aspergillus niger MAN-831 and Aspergillus wentii MAW-538 (Cellulase를 생산하는 Aspergillus niger MAN-831과 Aspergillus wentii MAW-538의 원형질체 형성 및 융합)

  • 박석규;이상원;문일식;손봉수;강성구
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.6
    • /
    • pp.964-969
    • /
    • 1995
  • For the effective utilization of cellulosic biomass, conidial protoplast fusion between Aspergillus niger MAN-831(${\beta}-glucosidase$) and A. wentii MAW-538(CMCase and avicelase), which produced potently cellulolytic enzymes was carried out. Optimal conditions for formation and regeneration of protoplast were conidiospore age-5 dyuas. $2-DG-30\mu\textrm{g}/ml$, preincubation time-4 hours, osmotic stabilizer-0.7M KCl, novozyme(7mg/ml)+driselase(2.5mg/ml) and reaction time of enzyme-5 hours. Optimal conditions for protoplast fusion were obtained by treatment of protoplasts with 15mM CaCl2 and 25% polyethylene glycol 4000(pH 6~7) as fusogenic agent at $36^{\circ}C$ for 25~30 minutes. The frequency was then $7.94{\times}10^{-4}$. CMCase, avicelase and ${\beta}-glucosidase$ activity of fusant F-208 strain was 1.5, 1.3, 1.2 times higher than those of parental strains, respectively.

  • PDF