• 제목/요약/키워드: strain-based verification method

Search Result 43, Processing Time 0.018 seconds

Application of nonlocal elasticity theory on the wave propagation of flexoelectric functionally graded (FG) timoshenko nano-beams considering surface effects and residual surface stress

  • Arani, Ali Ghorbanpour;Pourjamshidian, Mahmoud;Arefi, Mohammad;Arani, M.R. Ghorbanpour
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.141-153
    • /
    • 2019
  • This research deals with wave propagation of the functionally graded (FG) nano-beams based on the nonlocal elasticity theory considering surface and flexoelectric effects. The FG nano-beam is resting in Winkler-Pasternak foundation. It is assumed that the material properties of the nano-beam changes continuously along the thickness direction according to simple power-law form. In order to include coupling of strain gradients and electrical polarizations in governing equations of motion, the nonlocal non-classical nano-beam model containg flexoelectric effect is used. Also, the effects of surface elasticity, dielectricity and piezoelectricity as well as bulk flexoelectricity are all taken into consideration. The governing equations of motion are derived using Hamilton principle based on first shear deformation beam theory (FSDBT) and also considering residual surface stresses. The analytical method is used to calculate phase velocity of wave propagation in FG nano-beam as well as cut-off frequency. After verification with validated reference, comprehensive numerical results are presented to investigate the influence of important parameters such as flexoelectric coefficients of the surface, bulk and residual surface stresses, Winkler and shear coefficients of foundation, power gradient index of FG material, and geometric dimensions on the wave propagation characteristics of FG nano-beam. The numerical results indicate that considering surface effects/flexoelectric property caused phase velocity increases/decreases in low wave number range, respectively. The influences of aforementioned parameters on the occurrence cut-off frequency point are very small.

Screening of Biogenic Amine Non-Producing Yeast and Optimization of Culture Conditions Using Statistical Method for Manufacturing Black Raspberry Wine (복분자 와인 제조를 위한 바이오제닉 아민 비생성 효모의 선별 및 통계학적 기법을 이용한 배양조건 최적화)

  • Yang, Hee-Jong;Jeong, Su-Ji;Jeong, Seong-Yeop;Heo, Ju-Hee;Jeong, Do-Youn
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.4
    • /
    • pp.592-601
    • /
    • 2015
  • Rubus coreanus is known as Korean black raspberry, native to Korea, Japan, and China. Preliminary studies evaluating their potential for cancer treatment in mammalian test systems are ongoing. In recent years, interest has been renewed due to their high levels of anthocyanins. Anthocyanins in black raspberry are important due to their potential health benefits as dietary antioxidant, anti-inflammatory compound, and as a chemopreventive agent. In the present study, Saccharomyces cerevisiae BA29 was isolated from black raspberry fruit and fruit juice as a biogenic amine non-producing strain for manufacturing of black raspberry wine, after which we investigated its characteristics: biogenic amine-producing ability, cell growth ability, alcohol-fermentation ability, and resistance to alcohol, glucose, and sulfur dioxide. Based on preliminary experiments, we optimized culture medium compositions for improving dried cell weight of S. cerevisiae BA29 by response surface methodology (RSM) as a statistical method. Design for RSM used a central composite design, and molasses with the industrial applicability was used as a carbon source. Through statistical analysis, we obtained optimum values as follows: molasses 200 g/L, peptone 30 g/L, and yeast extract 40 g/L. For the model verification, we confirmed about 3-fold improvement of dried cell weight from 6.39 to 20.9167 g/L compared to basal yeast peptone dextrose medium. Finally, we manufactured black raspberry wine using S. cerevisiae BA29 and produced alcohol of 20.33%. In conclusion, S. cerevisiae isolated from black raspberry fruit and juices has a great potential in the fermentation of black raspberry wine.

Analysis of Pull-out Behavior of Tunnel-type Anchorage for Suspended Bridge Using 2-D Model Tests and Numerical Analysis (2차원 모형실험 및 수치해석을 통한 현수교 터널식 앵커리지의 인발거동 특성 분석)

  • Seo, Seunghwan;Park, Jaehyun;Lee, Sungjune;Chung, Moonkyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.10
    • /
    • pp.61-74
    • /
    • 2018
  • In this study, the pull-out behavior of tunnel type anchorage of suspension bridges was analyzed based on results from laboratory size model tests and numerical analysis. Tunnel type anchorage has found its applications occasionally in both domestic and oversea projects, therefore design method including failure mode and safety factor is yet to be clearly established. In an attempt to improve the design method, scaled model tests were conducted by employing simplified shapes and structure of the Ulsan grand bridge's anchorage which was the first case history of its like in Korea. In the model tests, the anchorage body and the surrounding rocks were made by using gypsum mixture. The pull-out behavior was investigated under plane strain conditions. The results of the model tests showed that the tunnel type anchorage underwent wedge shape failure. For the verification of the model tests, numerical analysis was carried out using ABAQUS, a finite element analysis program. The failure behavior predicted by numerical analysis was consistent with that by the model tests. The result of numerical analysis also showed that the effect of Poisson's ratio was negligible, and that a plugging type failure mode could occur only when the strength of the surrounding rocks was 10 times larger than that of anchorage body.