• Title/Summary/Keyword: strain transfer

Search Result 444, Processing Time 0.027 seconds

Construction of the Novel Baculovirus Transfer Vector Using the p10 Gene of BmNPV (BmNPV의 p10 유전자를 이용한 새로운 전이벡터 개발)

  • 강석우;진병래
    • Journal of Sericultural and Entomological Science
    • /
    • v.39 no.2
    • /
    • pp.180-185
    • /
    • 1997
  • To develope the novel baculovirus transfer vector, the p10 gene was cloned from the Bombyx mori nuclear polygedrosis virus (BmNPV) vB2 strain isolated from the B. mori larvae of sericultural farms. The novel transfer vector was constructed by using the p10 gene of BmNPV vB2 strain was 210 bp. The TAAG sequence at the -71 bp of upstream from translation initiator ATG and two polyadenylation signal site at the downstream from terminator TAA were also detected in the p10 gene. The 5' and 3' flanking region of the p10 gene amplified by PCR was cloned into pBluescriptII SK(+) and then transfer vector pBm10 was construceted. The 7.9 kb pBm10 was analysed by restriction enzymes and the map was confirmed. In order to determine the expression of foreign gene of pBm10, $\beta$-galactosidase gene was inserted in the SmaI site of foreign gene cloning site of pBm10. The pBm10 containing $\beta$-galactosidase gene was cotranfected wth genomic DNA of BmNPV vB2 into BmN-4 cells. The recombinant baculovirus expressing $\beta$-galactosidase was also produced polygedra in the infected cells. The results indicated that pBm10 is functional, suggesting that in the baculovirus expression vector system, the recombinant virus produced by pBm10 was effective by oral infection for the producing recombinant proteins in in vivo expression.

  • PDF

Study on Lond Transfer Characteristics of Sand Compaction Piles in Soft Soil Deposits (연약지반의 모래다짐말뚝에 대한 하중전이 연구)

  • Kim Jaekwon;Kim Soo-Il;Jung Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.183-196
    • /
    • 2004
  • Sand Compaction Pile (SCP) is a soft-ground improvement technique used for not only accelerating consolidation but also increasing bearing capacity of soils. In this study, laboratory tests and 3-D finite element analysis were peformed to investigate the characteristics of load transfer in SCP with an emphasis on free-strain behavior of piles with low replacement ratios in the range of 30 to $50\%$. Through these focused tests and numerical analyses, we proposed a simplified method to analyze the load transfer characteristics of SCP in soft ground. Moreover, it was shown that estimated normal stresses in SCP using the proposed method were in a reasonable agreement with actual values.

Development and Analysis of the Highly Efficient Support System in a Liquid Hydrogen Vessel (액체수소 저장탱크용 고효율 지지 시스템 개발 및 해석)

  • Yun, Sang-Kook;Park, Dong-Heun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.363-369
    • /
    • 2007
  • Probably the most significant heat transfer in the cryogenic liquid hydrogen storage tank from the atmosphere may occur through its support system. In this paper the efficient support system for the cryogenic storage vessel was newly developed and analysed. The support system was composed of a spherical ball as a supporter to reduce the contact area. which is located between two supporting SUS tubes inserted SUS and PTFE blocks. Numerical analyses for temperature distribution, and the thermal stress and strain of the support system were performed by the commercial codes FLUENT and ANSYS. The heat transfer rate of the supporter was evaluated by the thermal boundary potential method which can consider the variation of thermal conductivity with temperature. The results showed that the heat transfer rate through the developed supporter compared with the common SUS tube supporter was significantly reduced. The thermal stress and strain were obtained well below the limited values. It was found that the developed supporter can be one of the most efficient support systems for cryogenic liquid storage vessel.

Evaluation of Moment Transfer Efficiency of a Beam Web at RHS Column-to-Beam Connections (RHS기둥-보 접합부의 모멘트전달효율 평가)

  • Kim, Young-Ju;Oh, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.67-76
    • /
    • 2006
  • In this paper the moment transfer efficiency of a web and the strain concentration at the RHS (Rectangular Hollow Section) column-to-steel beam connections was evaluated. Initially, non-linear finite element analysis of five bare steel beam models was conducted. The models were designed to have different detail at their beam-to-column connection, so that the flexural moment capacity was different respectively. Analysis results showed that the moment transfer efficiency of the analytical model with RHS-column was poor when comparing to model with WF(Wide Flnage)-column due to out-of-plane deformation of the RHS-column flange. The presence of scallop and thin plate of RHS column was also a reason of the decrease of moment transfer efficiency, which would result in a potential fracture of the steel beam-to-column connections. Analytical results were compared with the previous experimental results. The analytical and the previous experimental results showed that the strain concentration was inversely proportional to the moment transfer efficiency of a beam web and the deformation capacity of connection was poor as their moment transfer efficiency degrades. Further finite element analyses of composite beam with a floor slab revealed that the neutral axis moved toward the top flange and the moment transfer efficiency of a beam web decreased, which led to premature failure of the connection.

Conjugal transfer and fate of the genetically engineered $Km^{r}$ gene in freshwater environments (유전자 조작기법으로 변형시킨 $Km^{r}$ 유전자의 담수 환경에서의 전이 및 행방)

  • 김치경;이성기
    • Korean Journal of Microbiology
    • /
    • v.28 no.3
    • /
    • pp.219-228
    • /
    • 1990
  • A kanamycin resistance($Km^r$) gene was studied for its transfer in natural freshwater environments by using the natural bacterial isolate(M1) of DK1 and the DKC601 strain, $Km^r$ plasmid of which was genetically engineered from the NI strain. The transfer frequency ofthe $Km^r$ gene and rearrangement of the $Km^r$ plasmid were compared between the gnetically engineered microorganism(GEM) and the NI parental strain by conjugation with the same recipient strain. The transfer frequency of the $Km^r$ gene was about $9.1\times 10^{-12}-1.8\times 10^{-11}$ in both the GEM and NI strains at 5 to $10^{\circ}C$, but the frequency of the NI was about 10 times higher than that of the GEM at 20 to $30^{\circ}C$. The $Km^r$ plasmid in the transconjugants obtained by conjugation of the NI with the MY1 strain as a ricipient showed alot of rearrangement, but the $Km^r$ plasmid transferred from the GEM was stable without alteration of its size. When the MT2 strain was used as a recipient, however, such a rearrangement of the $Km^r$ plamid was observed in the transconjugants obtained from the GEM as well as the NI strain. In those transconjugants obtained from different mating pairs and water environments, the plasmid were appeared to decrease in their number as the period of conjugation time was prolonged, but only the $Km^r$ plasmid transferred from the GEM kept having its size of 52kb. Therefore, the $Km^r$ gene was transferred at the same rate from the GEM and NI strains in natural freshwater environment, but the gene of the GEM strain was more stable than the NIduring conjugation and the $Km^r$ plasmid was rearranged by changing the recipient strain for conjugation in any water environments.

  • PDF

Experimental study on development length of prestressing strand in pretensioned prestressed concrete members (프리텐션 프리스트레스트 콘크리트 부재의 정착길이 평가)

  • Kim, Ui-Seong
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • s.49
    • /
    • pp.84-91
    • /
    • 2009
  • By bond mechanism between the prestressing strand and the concrete surrounding it, the effective force of prestressing must be transferred to the concrete entirely. The distance required to transfer the effective force of prestressing is called the transfer length, and the development length is the bond length required to anchor the strand as it resists external loads on the member. Transfer length was determined from the concrete strain profile at the level of the strands at transfer and development length was determined from various external loading lengths and compared with current code equation. Through the test results, bond failure is predicted based on the distress caused by cracks when they propagate within the transfer zone of prestressing strand. The current code equation was found to be conservative in comparison with the measured value.

  • PDF

Experimental Study on Development Length of Prestressing Strand in Pretensioned Prestressed Concrete Members (프리텐션 프리스트레스트 콘크리트 부재의 정착길이 정가)

  • Kim, Eui-Sung
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.115-121
    • /
    • 2008
  • By bond mechanism between the prestressing strand and the concrete surrounding it, the effective force of prestressing must be transferred to the concrete entirely. The distance required to transfer the effective force of prestressing is called the transfer length, and the development length is the bond length required to anchor the strand as it resists external loads on the member. Transfer length was determined from the concrete strain profile at the level of the strands at transfer and development length was determined from various external loading lengths and compared with current code equation. Through the test results, bond failure is predicted based on the distress caused by cracks when they propagate within the transfer zone of prestressing strand. The current code equation was found to be conservative in comparison with the measured value.

Inheritance of Resistance to Potato Virus Y Vein- necrosis Strain of N. africana (N. africana의 감자바이러스Y 엽맥괴저 계통에 대한 저항성의 유전)

  • 금완수;정윤화;정석훈;최상주;이승철
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.13 no.2
    • /
    • pp.48-51
    • /
    • 1991
  • A program was initiated to transfer potato virus Y vein-necrosis strain resistance from N. africana to N. tabacum The Fl plants between the above species were self-sterile, but all amphidiploid plants from the Fl plants and backcrossed flowers, that is, the N. tabacum flowers crossed with amphidiploid were self-fertile. The parent, amphidiploid plants of Fl, F2 population of the amphidiploid and the backcrossed generation were screened for a resistance of potato virus Y vein-necrosis strain isolated in Korea. The Chi-square values for the F2 population of the amphidiploid and the backcrossed generation fitted 35: 1 and 5 : 1 ratios of resistant to susceptible for the potato virus Y vein-necrosis strain, respectively. Therefore, it was found that the resistance of N. tabacum for the potato virus Y vein-necrosis strain was controlled by a single dominant gene.

  • PDF

Heat transfer coefficients for F.E analysis in warm forging processes (온간 단조 공정에서의 열전달 계수)

  • Kang J. H.;Ko B. H.;Jae J. S.;Kang S. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.138-143
    • /
    • 2005
  • Finite Element analysis is widely applied to elevated temperature forging processes and shows a lot of information of plastic deformation such as strain, stress, defects, damages and temperature distributions. In highly elevated temperature deformation processes, temperature of material and tool have significant influence on tool life, deformation conditions and productivities. To predict temperature related properties accurately, adequate coefficients of not only contact heat transfer between material and dies but also convection heat transfer due to coolants are required. In most F.E analysis, too higher value of contact heat transfer coefficient is usually applied to get acceptable temperature distribution of tool. For contact heat transfer coefficients between die and workpiece, accurate values were evaluated with different pressure and lubricants conditions. But convection heat transfer coefficients have not been investigated for forging lubricants. In this research, convection heat transfer coefficients for cooling by emulsion lubricants are suggested by experiment and Inverse method. To verify acquired convection and contact heat transfer coefficients, tool temperature was measured for the comparison between measured tool temperature and analysis results. To increase analysis accuracy, repeated analysis scheme was applied till temperature of the tool got to be in the steady-state conditions. Verification of heat transfer coefficients both contact and convection heat transfer coefficients was proven with good accordance between measurement and analysis.

  • PDF