• 제목/요약/키워드: strain ratio

검색결과 2,200건 처리시간 0.025초

Experimental study on the compression of concrete filled steel tubular latticed columns with variable cross section

  • Yang, Yan;Zhou, Jun;Wei, Jiangang;Huang, Lei;Wu, Qingxiong;Chen, Baochun
    • Steel and Composite Structures
    • /
    • 제22권3호
    • /
    • pp.663-675
    • /
    • 2016
  • The effects of slenderness ratio, eccentricity and column slope on the load-carrying capacities and failure modes of variable and uniform concrete filled steel tubular (CFST) latticed columns under axial and eccentric compression were investigated and compared in this study. The results clearly show that all the CFST latticed columns with variable cross section exhibit an overall failure, which is similar to that of CFST latticed columns with a uniform cross section. The load-carrying capacity decreases with the increase of the slenderness ratio or the eccentricity. For 2-m specimens with a slenderness ratio of 9, the ultimate load-carrying capacity is increased by 3% and 5% for variable CFST latticed columns with a slope of 1:40 and 1:20 as compared with that of uniform CFST latticed columns, respectively. For the eccentrically compressed variable CFST latticed columns, the strain of the columns at the loading side, as well as the difference in the strain, increases from the bottom to the cap, and a more significant increase in strain is observed in the cross section closer to the column cap.

혼화재 사용에 따른 고강도 콘크리트의 수축에 관한 실험적 연구 (An Experimental Study on Shrinkage of High Strength Concrete with Mineral Admixture)

  • 이영재
    • 한국산업융합학회 논문집
    • /
    • 제13권2호
    • /
    • pp.99-106
    • /
    • 2010
  • The effects of additive and shrinkage reducing agent on the drying and autogenous shrinkage of high strength concrete are investigated in this study. As results, when the ratio of W/B(low water to binder ratio) increase, the compressive strength is decreased. Comparing with PC(portland cement) concrete, the strength is 2.8%, 3.2% and 3.8% lower respectively than that of PC when concrete mixing ratio is 0.2%, 0.3% and 0.4% in 28 days curing. Drying shrinkage strain of PC concrete showed $-650{\times}10^{-6}$ in 91 days curing. When SR(shrinkage reducing agent) of 0.2%, 0.3% and 0.4% is mixed, the drying shrinkage strains are 21%, 34% and 41% lower than those of PC in 91 days curing. Autogenous shrinkage strain of PC concrete appeared $-480{\times}10^{-6}$ in 56 days curing. When SR of 0.2%, 0.3% and 0.4% is mixed, the autogenous drying shrinkage strain are 12.5%, 19.8% and 33.3% lower than those of PC in 56 days curing. In cases of using the mineral and shrinkage agent or only using a shrinkage reducing agent also appeared same reducing effects for drying shrinkage and autogenous shrinkage.

  • PDF

Axial compression performance of basalt-fiber-reinforced recycled-concrete-filled square steel tubular stub column

  • Zhang, Xianggang;Gao, Xiang;Wang, Xingguo;Meng, Ercong;Wang, Fang
    • Advances in concrete construction
    • /
    • 제10권6호
    • /
    • pp.559-571
    • /
    • 2020
  • This study aimed to inspect the axial compression mechanical performance of basalt-fiber-reinforced recycled - concrete (BFRRC)-filled square steel tubular stub column. The replacement ratio of recycled coarse aggregate (RCA) and the basalt fiber (BF) dosage were used as variation parameters, and the axial compression performance tests of 15 BFRRC-filled square steel tubular stub column specimens were conducted. The failure mode and the load-displacement/strain curve of the specimen were measured. The working process of the BFRRC-filled square steel tubular stub column was divided into three stages, namely, elastic-elastoplasticity, sudden drawdown, and plasticity. The influence of the design parameters on the peak bearing capacity, energy dissipation performance, and other axial compression performance indexes was discussed. A mathematical model of segmental stiffness degradation was proposed on the basis of the degradation law of combined secant-stiffness under axial compression. The full-process curve equation of axial compressive stress-strain was proposed by introducing the influencing factors, including the RCA replacement ratio and the BF dosage, and the calculated curve agreed well with the test-measured curve.

Experimental study on long-term behavior of RC columns subjected to sustained eccentric load

  • Kim, Chang-Soo;Gong, Yu;Zhang, Xin;Hwang, Hyeon-Jong
    • Advances in concrete construction
    • /
    • 제9권3호
    • /
    • pp.289-299
    • /
    • 2020
  • To investigate the long-term behavior of eccentrically loaded RC columns, which are more realistic in practice than concentrically loaded RC columns, long-term eccentric loading tests were conducted for 10 RC columns. Test parameters included concrete compressive strength, reinforcement ratio, bar yield strength, eccentricity ratio, slenderness ratio, and loading pattern. Test results showed that the strain and curvature of the columns increased with time, and concrete forces were gradually transferred to longitudinal bars due to the creep and shrinkage of concrete. The long-term behavior of the columns varied with the test parameters, and long-term effects were more pronounced in the case of using the lower strength concrete, lower strength steel, lower bar ratio, fewer loading-step, higher eccentricity ratio, and higher slenderness ratio. However, in all the columns, no longitudinal bars were yielded under service loads at the final measuring day. Meanwhile, the numerical analysis modeling using the ultimate creep coefficient and ultimate shrinkage strain measured from cylinder tests gave quite good predictions for the behavior of the columns.

연속철근콘크리트 도로포장의 거동에 종방향 철근비가 미치는 영향 (Effect of Longitudinal Steel Ratio on Behavior of CRCP System)

  • 김성민;조병휘;권순민
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.58-61
    • /
    • 2006
  • The effect of the steel ratio on the behavior of continuously reinforced concrete pavement (CRCP) under moving wheel loads and environmental loads were investigated in this study. The CRCP sections having different steel ratios of 0.6, 0.7, and 0.8% were considered: (1) to evaluate the load transfer efficiency (LTE) at transverse cracks; (2) to investigate strains in CRCP when the system is subjected to moving vehicle loads; (3) and to investigate the time histories of the crack spacing variations. The LTEs were obtained by conducting the falling weight deflectometer (FWD) tests. The strains in the concrete slab and the bond braker layer under moving vehicle loads were obtained using embedded strain gages. The results of this study show that the LTEs at transverse cracks are very high and not affected by the steel ratio. The strains in CRCP under vehicle loads become smaller as the vehicle speed increases or as the wandering distance increases; however, the strains are not clearly affected by the steel ratio. However, the changes in the crack spacings are affected by the steel ratio.

  • PDF

비대칭 압연한 AA1100 판재에서 잔류전단변형에 미치는 롤과 재료간의 마찰의 영향 (Effect of friction between roll and sample on residual shear strains in AA1050 sheet during asymmetrical rolling)

  • 지영규;정효태;허무영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.156-158
    • /
    • 2003
  • Sheets of aluminum alloy 1050 were asymmetrically cold rolled in a rolling mill with different roll speeds. In order to promote the shear deformation during asymmetrical rolling, cold rolling without lubrication was performed. The variation of the shear strain state during asymmetrical rolling was tackled by means of FEM calculations. Asymmetrical rolling gave rise to the development of pronounced residual shear strain gradients throughout the thickness layers.

  • PDF

채널 간격에 따른 대향류 확산화염의 가연 영역의 변화 (Flammability Limits Variation of Opposed Flow Diffusion Flames for Different Channel Gap)

  • 이민정;김남일
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.323-324
    • /
    • 2012
  • Flammability limits of opposed flow diffusion flame in a narrow channel was investigated experimentally and theoretically. There were three different extinction modes corresponding to high strain rate (HSR), low strain rate (LSR) and dilution ratio (DR) limits. To investigate these limits, a theoretical study was followed by focusing on flow and heat transfer characteristics. Consequently, a dead space concept that has been used for premixed flames was important to reveal the heat loss mechanism in a narrow channel especially for LSR conditions even in the case of diffusion flames.

  • PDF

강재 기둥-보 구조물의 피로곡선 연구 (Study for Woehler Fatigue Line of Steel Beam-to-Column Structure)

  • 공병승
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.700-705
    • /
    • 2005
  • This study presents a fatigue line with a plastic rotational angle to a great extent of plastic strain of Low-Cycle-fatigue period, such as earthquake, etc. This fatigue line with a plastic rotational angle is measured and analysed more simply in practice rather than Woehler's fatigue line which is developed in stress variation of the structure. It shows that the slope of fatigue line with a plastic rotational angle is equal to that with plastic strain through the experiments by proving the correlation that the plastic strain ratio is directly proportional to the plastic rotational angle in plastic hinge.

  • PDF

과압밀점토의 응력이력 의존성에 관한 연구 (The Effects of Stress History on the Behaviour of Overconsolidated Clay)

  • 김병일;신현영;김용수;김수삼
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.161-166
    • /
    • 2001
  • Overconsolidated clays have a different stress history according to the deposit environment. The stress history is classified into (i) rotation angle of stress path, (ii) overconsolidation ratio, and (iii) magnitude of length of recent stress path. Stress-strain behaviour of overconsolidated clays strongly depends on these stress history. In this study a series of drained stress path tests were carried out. Test results indicated that stress-strain behaviour of overconsolidated clay(focused on strain rate) depends on OCR and length of recent stress path, especially rotation angle.

  • PDF

콘크리트의 동해열화 메커니즘에 관한 실험적 연구 (Experimental Study on the Frost Deterioration Meterioration Mechanism of Concrete)

  • 이승한;이순환;정해구;한형섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.169-174
    • /
    • 1996
  • It have been announced that concrete subjected to freezing and thawing cause deterioration by expanded inside water and contracted at thawing. However, this study descrebe the deterioration mechanism of concrete by freezing and thawing test. Embeded strain gauges were used to measure the inside restrict strain due to the temperature differenct inside and outside the concrete test specimens. Test results showed that using the air entrained admixture and expanded poly-styrene was developed durability of concrete by decreasing inside retrict strain ratio.

  • PDF