• Title/Summary/Keyword: strain ratio

Search Result 2,200, Processing Time 0.031 seconds

Axial strain - Volumetric strain Relationship of Light-Weighted Foam Soil (경량기포혼합토의 축변형율 - 체적변형율 관계)

  • 김주철;김병탁;윤길림;서인식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.853-860
    • /
    • 2003
  • Relationship between axial strain and volumetric strain of Light-Weighted Foam Soil (LWFS) are investigated. LWFS is composed of the dredged soil from offshore, cement and foam to reduce the unit weight and also increase compressive strength. For this purpose. the triaxial compression tests are carried out on the prepared specimens of LWFS with various conditions such as initial water contents, cement contents, and curing stresses, The test results of LWFS Indicated that the axial strain - volumetric strain relationship is almost linearity with increase cement contents and the unit weight but the relationship is non-linearity with decrease cement contents and the unit weight. In this study, it is found that assuming no change of cross section area of LWFS, axial strain occurring the poisson's ratio of zero, that the axial strain same to volumetric strain, steeply increases with decrease the unit weight, initial water content, and cement contents.

  • PDF

The Influence of Initial Overloads on the Fatigue Life of Spot-welded Tensile-shear Specimens (初期 過荷重이 點熔接 引張剪斷 試驗片의 疲勞擧動에 미치는 影響)

  • 강성수;정원욱
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.60-67
    • /
    • 1995
  • The factors affecting on the fatigue strength of spot_welded specimens have been studied. The influence of initial overloads on the fatigue life of spot_welded tensile_shear specimens is investigated by considering fatigue crack initiation and crack propagation. The change of strain range and the influence of initial overload are correlated on the basis ol strain results. The results of this study are as follows. l) The initial absolute strain range decreased with initial overloads increase, and absolute strain range decreased before transformation of waveform of strain, but increased after transformation of waveform of strain. 2) In case of subsequent point of inflection of offset strain, the increment of this strain decreased with initial overload increase. 3) As initial overloads increase, the deformation behavior of spot welded parts is restricted after overloading.

  • PDF

Effect of Non-Plastic Fines Content on the Pore Pressure Generation of Sand-Silt Mixture Under Strain-Controlled CDSS Test (변형률 제어 반복직접단순전단시험에서 세립분이 모래-실트 혼합토의 간극수압에 미치는 영향)

  • Tran, Dong-Kiem-Lam;Park, Sung-Sik;Nguyen, Tan-No;Park, Jae-Hyun;Sung, Hee-Young;Son, Jun-Hyeok;Hwang, Keum-Bee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.33-39
    • /
    • 2024
  • Understanding the behavior of soil under cyclic loading conditions is essential for assessing its response to seismic events and potential liquefaction. This study investigates the effect of non-plastic fines content (FC) on excess pore pressure generation in medium-density sand-silt mixtures subjected to strain-controlled cyclic direct simple shear (CDSS) tests. The investigation is conducted by analyzing excess pore pressure (EPP) ratios and the number of cycles to liquefaction (Ncyc-liq) under varying shear strain levels and FC values. The study uses Jumunjin sand and silica silt with FC values ranging from 0% to 40% and shear strain levels of 0.1%, 0.2%, 0.5%, and 1.0%. The findings indicate that the EPP ratio increases rapidly during loading cycles, with higher shear strain levels generating more EPP and requiring fewer cycles to reach liquefaction. At 1.0% and 0.5% shear strain levels, FC has a limited effect on Ncyc-liq. However, at a lower shear strain level of 0.2%, increasing FC from 0 to 10% reduces Ncyc-liq from 42 to 27, and as FC increases further, Ncyc-liq also increases. In summary, this study provides valuable insights into the behavior of soil under cyclic loading conditions. It highlights the significance of shear strain levels and FC values in excess pore pressure generation and liquefaction susceptibility.

Review of Steel ratio Specifications in Korean Highway Bridge Design Code (Limit States Design) for the Design of RC Flexural Members (철근콘크리트 휨부재 설계를 위한 도로교설계기준(한계상태설계법)의 철근비 규정 검토)

  • Lee, Ki-Yeol;Kim, Woo;Lee, Jun-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.277-287
    • /
    • 2017
  • This paper describes the specifications on balanced steel ratio and maximum reinforcement for the design of RC flexural members by the Korean Highway Bridge Design Code based on limit states design. The Korean Highway Bridge Design Code (Limit States Design) is not provide for the balanced steel ratio specification for the calculation of required steel area of RC flexural members design. The maximum steel area limited the depth of the neutral axis at the ultimate limit states after redistribution of the moment, and also recommended the maximum steel area should not exceed 4 percent of the cross sectional area. However, from the maximum neutral axis depth provisions should increase the cross section is calculated to be less the maximum reinforcement area, and according to the 4% of the cross sectional area of the concrete, the tensile strain of the reinforcement is calculated to be greater than double the yielding strain, so can not guarantee a ductile behavior. This study developed a balanced reinforcement ratio that is basis for the required reinforcement calculation for tension-controlled RC flexural members design in the ultimate limit states verification provisons and material properties and applied the ultimate strain of the concrete compressive strength with a simple formular to be applied to design practice induced. And assumed the minimum allowable tensile strain of reinforcement double the yielding strain, and applying correction coefficient up to the ratio of maximum neutral axis depth, proposed maximum steel ratio that can be applied irrespective of the reinforcement yield strength and concrete compressive strength.

Three-dimensional finite element analysis of buccally cantilevered implant-supported prostheses in a severely resorbed mandible

  • Alom, Ghaith;Kwon, Ho-Beom;Lim, Young-Jun;Kim, Myung-Joo
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.1
    • /
    • pp.12-23
    • /
    • 2021
  • Purpose. The aim of the study was to compare the lingualized implant placement creating a buccal cantilever with prosthetic-driven implant placement exhibiting excessive crown-to-implant ratio. Materials and Methods. Based on patient's CT scan data, two finite element models were created. Both models were composed of the severely resorbed posterior mandible with first premolar and second molar and missing second premolar and first molar, a two-unit prosthesis supported by two implants. The differences were in implants position and crown-to-implant ratio; lingualized implants creating lingually overcontoured prosthesis (Model CP2) and prosthetic-driven implants creating an excessive crown-to-implant ratio (Model PD2). A screw preload of 466.4 N and a buccal occlusal load of 262 N were applied. The contacts between the implant components were set to a frictional contact with a friction coefficient of 0.3. The maximum von Mises stress and strain and maximum equivalent plastic strain were analyzed and compared, as well as volumes of the materials under specified stress and strain ranges. Results. The results revealed that the highest maximum von Mises stress in each model was 1091 MPa for CP2 and 1085 MPa for PD2. In the cortical bone, CP2 showed a lower peak stress and a similar peak strain. Besides, volume calculation confirmed that CP2 presented lower volumes undergoing stress and strain. The stresses in implant components were slightly lower in value in PD2. However, CP2 exhibited a noticeably higher plastic strain. CONCLUSION. Prosthetic-driven implant placement might biomechanically be more advantageous than bone quantity-based implant placement that creates a buccal cantilever.

Design of high stiffness and lightweight body for stiffness distribution ratio (강성 배분비를 괴려한 고강성 경량화 차체 설계)

  • Yang, Hee-Jong;Kim, Ki-Chang;Yim, Hong-Jae;Kim, Chan-Mook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.562-566
    • /
    • 2006
  • Lightweight body can cause a low stiffness due to the decrease of panel thickness and reinforcing member. The other way, high stiffness body demands an increase of mass. Front pillar section area is decreased due to driver's visual field. Global vehicle stiffness is affected by stiffness distribution ratio between upper part and lower part at side body structure. This paper will describe a process used to evaluate the stiffness distribution ratio based on research of strain energy analysis of the tip rotation method. In addition, optimum design schemes are presented for high stiffness and lightweight body structure considering the investigated stiffness distribution ratio. In this way the designer will be aided by a defined design guide and a set of supporting tool to help him work towards a good design

  • PDF

Effect of Interphase Condition and Fiber Content on the Dynamic Properties of Short-fiber Reinforced Chloroprene Rubber (계면상 조건과 단섬유 함유량이 단섬유 강화CR의 동적특성에 미치는 영향)

  • Ryu, Sang-Ryeoul;Lee, Dong-Joo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1151-1156
    • /
    • 2003
  • The dynamic properties of short-fiber reinforced Chloroprene rubber for vibration isolators have been studied as functions of interphase conditions and fiber content. The loss factor showed the maximum at strain amplitude 2%, and increased 0.09 for matrix, 0.05 for reinforced rubber with increasing frequency respectively. The dynamic ratio rapidly decreased with increasing strain amplitude, and some increased with increasing frequency. The better interphase condition showed the lower dynamic ratio. Therefore, the short-fiber reinforced rubber could have the better isolation in frequency ratio(${\sqrt{2}}min$.) compared to frequency ratio(${\sqrt{2}}max$.). And we have investigate the possibility of applying short-fiber reinforced rubber to automotive engine mount.

  • PDF

Design of High Stiffness and Lightweight Body for Stiffness Distribution Ratio (강성 배분비를 고려한 고강성화 경량화 차체 설계)

  • Yang, Hee-Jong;Kim, Ki-Chang;Lim, Si-Hyung;Kim, Chan-Mook;Yim, Hong-Jae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.10
    • /
    • pp.901-906
    • /
    • 2007
  • Lightweight body due to the decrease of panel thickness and reinforcing member might cause low stiffness. On the other hand, high stiffness body requires an increase of mass. Front pillar section area has been decreased for increasing the driver's visual field. Global vehicle stiffness is affected by stiffness distribution ratio between upper part and lower part at a side body structure. This paper describes a process used to evaluate the stiffness distribution ratio based on strain energy. In addition, optimum design schemes are presented for high stiffness and lightweight body structure considering the investigated stiffness distribution ratio.

A Study on the Shear Strength Properties of Reinforced Concrete Beams according to Shear Span-Depth Ratio (전단지간비에 따른 철근콘크리트 보의 전단강도특성에 관한 연구)

  • Park, Jong-Gun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.1
    • /
    • pp.93-100
    • /
    • 2000
  • The purpose of this study is to investigate the shear behavior of reinforced concrete beams according to small shear span-depth ratio between a/d=1.5, 2.8, 3.6. In general, shear strength of reinforced concrete beams is dependent on the compressive strength of concrete the longitudinal steel ratio, the shear span-depth ratio and shear reinforcement. The static test was carried out to measure the ultimate load, the initial load of flexural and diagonal cracking, crack patterns, fracture modes. The load versus strain and load versus deflection relations were obtained from the static test. The test results on shear strength were compared with results obtained by the formulas of ACI code 318-95. The shear strength of reinforced concrete beams exceeded those predicted following present ACI code 318-95(11-6).

  • PDF

Robust Optimal Positioning of Strain Gauges on Blades (Strain Gauge의 Blade내 설치위치 최적화)

  • Park, Byeong-Keun;Yang, Bo-Suk;Marc P. Mignolet
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.345.2-345
    • /
    • 2002
  • This paper focuses on the formulation and validation of an automatic strategy for the selection of the locations and directions of strain gauges to capture at best the modal response of a blade in a series of modes. These locations and directions are selected to render the strain measurements as robust as possible with respect to random mispositioning of the gauges and gauge failures. (omitted)

  • PDF