• 제목/요약/키워드: strain rates

검색결과 793건 처리시간 0.02초

한국산 선발 계통, 일본산 양식 계통 그리고 이들 두 계통간 잡종 계통 참돔 치어의 총 암모니아성 질소 배설률 및 분 배출률을 통한 사료내 단백질 이용 효율 비교 (Total Ammonia Nitrogen Excretion Rates and Feces Production Rates as an Index for Comparing Efficiency of Dietary Protein Utilization of Offsprings from Selected Korean Strain, Cultured Japanese Strain and Their Intraspecific Hybrid Strain of Juvenile Red Sea Bream, Pagrus major)

  • 오승용;노충환;홍경표;김종만
    • Ocean and Polar Research
    • /
    • 제26권3호
    • /
    • pp.415-423
    • /
    • 2004
  • An experiment was conducted to investigate the differences of total ammonia nitrogen (TAN) excretion rates and feces production rates among the offsprings from cultured Japanese strain (JJ, mean BW; $17.1{\pm}0.1g$), intraspecific hybrid strain between cultured Japanese and selected Korean strain (JK, mean BW: $17.1{\pm}0.1g$) and selected Korean strain(KK, mean BW: $21.5{\pm}0.1g$) of red sea bream in order to compare their dietary protein utilization efficiency. Fish were hand-fed with a commercial diet containing 46.7% crude protein for 2 weeks, three times daily 09:00, 13:00 and 17:00. After daily feeding, the TAN excretion rates reached peaks of 49.03, 58.75 and 36.26mg/kg fish/hr for the JJ, JK and KK strain, respectively, during the daytime. The value of the KK strain was significantly lower than that of the JJ and JX shuin (P<0.05), however daily TAN excretion rates of the JJ, JK and KK strain were not different (P>0.05). When fish were fed at satiation after 4 days of starvation, TAN excretion rates reached the maximum values 4 hours after the feeding fur the KK (31.23 mg/kg fish/hr) and 6 hours after the feeding fur the JJ (44.19 mg/tg fish/hr) and JK strain (41.70 mg/kg fish/hr). After 3 days of starvation, the daily endogenous TAU excretion rates (ETE) for the JJ, JK. and KK strain were 286.91, 215.66 and 179.29mg/kg fish/day, respectively. The value of the KK strain was lower than that of the JJ and JK strain (P<0.05). The total feces production rates of the JJ, JK and KK strain were not significantly different, however the proportions of feces production rates by time for the JJ, JK and KK strain were different (P<0.05). As overall results, efficiency of dietary protein utilization of JJ, JK and KK seems to be different and KK strain could offer a desirable option for aquaculture purpose.

Computational viscoelastic modeling of strain rate effect on recycled aggregate concrete

  • Suthee Piyaphipat;Boonchai Phungpaingam;Kamtornkiat Musiket;Yunping Xi
    • Computers and Concrete
    • /
    • 제32권4호
    • /
    • pp.383-392
    • /
    • 2023
  • The mechanical properties of Recycled Aggregate Concrete (RAC) with 100 percent Recycled Coarse Aggregate (RCA) under loading rates were investigated in depth. The theoretical model was validated utilizing the RAC elastic modulus obtained from cylindrical specimens subjected to various strain rates. Viscoelastic theories have traditionally been used to describe creep and relaxation of viscoelastic materials at low strain rates. In this study, viscoelastic theories were extended to the time domain of high strain rates. The theory proposed was known as reversed viscoelastic theory. Normalized Dirichlet-Prony theory was used as an illustration, and its parameters were determined. Comparing the predicted results to the experimental data revealed a high level of concordance. This methodology demonstrated its ability to characterize the strain rate effect for viscoelastic materials, as well as its applicability for determining not only the elastic modulus for viscoelastic materials, but also their shear and bulk moduli.

Effect of rate of strain on the strength parameters of clay soil stabilized with cement dust by product

  • Radhi M Alzubaidi;Kawkab Selman;Ayad Hussain
    • Geomechanics and Engineering
    • /
    • 제37권4호
    • /
    • pp.419-429
    • /
    • 2024
  • The primary goal was to assess how the addition of cement dust, a byproduct known to be harmful, could be used to stabilize clay. Various percentages of cement dust were added to soil samples, which were then subjected to triaxial testing at different rates of strain using an unconsolidated undrained triaxial machine. Six different rates of strain were applied to analyze the response of the clay under different conditions, resulting in 216 triaxial sample tests. As the percentage of cement dust in the clay samples increased, there was a noticeable increase in the strength properties of the clay, indicating a positive effect of cement dust on the clay's strength characteristics. Higher rates of strain during testing led to increased strength properties of the clay. Varying cement dust content influenced the impact of increasing the rate of strain on the clay's strength properties. Higher cement dust content reduced the sensitivity of the clay to changes in strain rate, indicating that the clay became less responsive to changes in strain rate as cement dust content increased. Potential for Clay Stabilization Cement dust proved the potential to enhance the strength properties of clay, indicating its potential utility in clay stabilization applications. Both higher percentages of cement dust and higher rates of strain were found to increase the clay's strength. It's essential to consider both the percentage of cement dust and the rate of strain when assessing the strength properties of clay in practical applications.

동적하중을 받는 기능성 고폭화약조성 시뮬런트 재료물성 연구 (A Study on Dynamic Material Properties of Functional High Explosive Formulation Simulant Subjected to Dynamic Loading)

  • 박정수;염기선;박충희;정세환;이근득;허훈
    • 한국군사과학기술학회지
    • /
    • 제16권6호
    • /
    • pp.857-866
    • /
    • 2013
  • This paper is concerned with the material properties of functional high explosive(FHX) simulant at various strain rates ranging from $10^{-4}/sec$ to $10^1/sec$. Material properties of FHX at high strain rates are important in prediction of deformation modes of FHX in a warhead which undergoes dynamic loading. Inert FHX stimulant which has analogous mechanical properties with FHX was utilized for material tests due to safety issues. Uniaxial tensile tests at quasi-static strain rates ranging from $10^{-4}/sec$ to $10^{-2}/sec$ and intermediate strain rates ranging from $10^{-1}/sec$ to $10^1/sec$ were conducted with JANNAF specimen using a tensile testing machine, INTRON 5583, and developed high speed material testing machine, respectively. Uniaxial compressive tests at quasi-static strain rates and intermediate strain rates were conducted with cylindrical specimen using a dynamic materials testing machine, INSTRON 8801. And cyclic compressive loading tests were performed with various strain rates and strains. Deformation behaviors were investigated using captured images obtained from a high-speed camera.

Determination of plastic concrete behavior at different strain rates to determine Cowper-Symonds constant for numerical modeling

  • Nateghi, Reza;Goshtasbi, Kamran;Nejati, Hamid Reza
    • Computers and Concrete
    • /
    • 제26권3호
    • /
    • pp.227-237
    • /
    • 2020
  • Strain rate investigations are needed to calibrate strain-rate-dependent material models and numerical codes. An appropriate material model, which considers the rate effects, need to be used for proper numerical modeling. The plastic concrete cut-off wall is a special underground structure that acts as a barrier to stop or reduce the groundwater flow. These structures might be subjected to different dynamic loads, especially earthquake. Deformability of a structure subjected to dynamic loads is a principal issue which need to be undertaken during the design phase of these structures. The characterization of plastic concrete behavior under different strain rates is essential for proper designing of cut-off walls subjected to dynamic loads. The Cowper-Symonds model, as one of the most commonly applied material models, complies well with the behavior of a plastic concretes in low to moderate strain rates and will be useful in explicit dynamics simulations. This paper aims to present the results of an experimental study on mechanical responses of one of the most useful types of plastic concrete and Cowper-Symonds constant determination procedures in a wide range of strain rate from 0.0005 to 107 (1/s). For this purpose, SHPB, uniaxial, and triaxial compression tests were done on plastic concrete samples. Based on the results of quasi-static and dynamic tests, the dynamic increase factors (DIF) of this material in different strain rates and stress state conditions were determined for calibration of the Cowper - Symonds material models.

변형률 속도에 따른 유리섬유 에폭시 복합재료의 동적 강도 변화 (Dynamic Strength Variation of Glass Epoxy Composites with respect to Strain Rates)

  • 임태성;이대길
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.83-88
    • /
    • 2001
  • In this study, the tensile and compressive tests of glass fiber epoxy composites were performed to measure the strength variation with respect to strain rates of 1-200 $\textrm{sec}^{-1}$. In addition, tensile and compressive tests of 50-200 $\textrm{sec}^{-1}$ strain rates were conducted at a low temperature ($-60^{\circ}C$) to investigate the effects of temperature on the strength variation. From the test results, it was found that the tensile and compressive strengths increased about 100% and 70%, respectively, at the strain rates of 10-100 $\textrm{sec}^{-1}$ compared to the quasi-static strengths while the strengths were little affected by the environmental temperature variation.

  • PDF

Study of shear and elongational flow of solidifying polypropylene melt for low deformation rates

  • Tanner, R.I.;Kitoko, V.;Keentok, M.
    • Korea-Australia Rheology Journal
    • /
    • 제15권2호
    • /
    • pp.63-73
    • /
    • 2003
  • An experimental technique was developed to determine the strain-rate in a tensile specimen. Then one can calculate the transient isothermal elongational viscosity. Both shear and elongational viscosities were measured to study the effect of shear and elongational fields on the flow properties. The comparison between these viscosities shows that the onset of rapid viscosity growth as crystallization solidification proceeds occurs at about the same value of time at very small deformation rates (0.0028 and 0.0047 $s^{-1}$). The comparison of these measured viscosities as functions of shear and elongational Hencky strains also reveals that the onset of rapid viscosity growths starts at critical Hencky strain values. The behaviour of steady shear viscosity as function of temperature sweep was also explored at three different low shear rates. Finally, the influence of changing oscillatory frequencies and strain rates was also investigated.

Mg합금 온간판재 성형시 성형한계에 미치는 변형률 속도의 영향 (An Effect of Strain rate of Forming limits of Mg Alloy at Warm Sheet Forming)

  • 정진호;김민철;이영선;권용남;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.279-280
    • /
    • 2007
  • In this study, it is investigated that the effect of material properties such as various temperature, forming speed and strain rates on formability and forming limits of Mg alloy sheet in square cup deep drawing. Since the sheet metal forming of Mg alloy is perform at elevated temperature, the effect of strain rates related with the forming temperature and forming speed is very important factor for formability and forming limits. Therefore, the investigation for process variables is necessary to improve formability and forming limits. Also, the effects of strain rate and thickness transformation were studied by the experimental and FE analysis using the square cup deep drawing. The temperature, forming speed, and strain rates were investigated. Forming of Mg alloy takes consider into temperature, proper forming speed and strain-rate the formed parts were good without defects fur forming limits.

  • PDF

대향류 화염의 비정상 거동에 대한 연구 (Unsteady behavior of counterflow flame)

  • 이기호;이은도;오광철;이춘범;신현동
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제25회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.33-39
    • /
    • 2002
  • Unsteady behaviors of counterflow flame were studied experimentally in opposing jet counterflow burner using diluted methane. To generate the unsteadiness on the flame, the counterflow diffusion flame was perturbed by velocity changes made by the pistons installed on both sides of the air and fuel stream. The velocity changes were measured by Hot wire and Laser Doppler Velocimetry, and the flame behaviors were observed by High speed ICCD and ICCD. In this investigation, the spatial irregularity of the strain rate caused the flame to extinguish from the outside to the axis during the extinction, and we found the following unsteady phenomena. First, the extinction strain rates of unsteady cases are much larger than those of the steady ones. Second, the extinction strain rates become larger as the slope of the change of the strain rate increases. Third, the unsteady extinction strain rates become smaller with the increase of the initial strain rate.

  • PDF

차체용 강판의 온도에 따른 동적 구성방정식에 관한 연구 (II) - 온도에 따른 동적 구성방정식 - (Dynamic Constitutive Equations of Auto-body Steel Sheets with the Variation of Temperature (II) - Flow Stress Constitutive Equation -)

  • 이희종;송정한;박성호;허훈
    • 대한기계학회논문집A
    • /
    • 제31권2호
    • /
    • pp.182-189
    • /
    • 2007
  • This paper is concerned with the empirical flow stress constitutive equation of steel sheets for an auto-body with the variation of temperature and strain rate. In order to represent the strain rate and temperature dependent behavior of the flow stress at the intermediate strain rates accurately, an empirical hardening equation is suggested by modifying the well-known Khan-Huang-Liang model. The temperature and strain rate dependent sensitivity of the flow stress at the intermediate strain rate is considered in the hardening equation by coupling the strain, the strain rate and the temperature. The hardening equation suggested gives good correlation with experimental results at various intermediate strain rates and temperatures. In order to verify the effectiveness and accuracy of the suggested model quantitatively, the standard deviation of the fitted result from the experimental one is compared with those of the other two well-known empirical constitutive models such as the Johnson-Cook and the Khan-Huang-Liang models. The comparison demonstrates that the suggested model gives relatively well description of experimental results at various strain rates and temperatures.