• 제목/요약/키워드: strain modes

검색결과 402건 처리시간 0.024초

J-적분을 이용한 이종강재 용접접합부 계면균열의 파괴역학적 해석 (Fracture Mechanics Analysis of a Interface Crack in the Weld of Dissimilar Steels using the J-integral)

  • 이진형;장경호
    • 한국전산구조공학회논문집
    • /
    • 제17권4호
    • /
    • pp.423-431
    • /
    • 2004
  • 용접접합부 균열의 파괴역학적 해석을 위해서는 용접중에 발생하는 잔류응력해석과 파괴해석이 병행되어야 한다. 잔류응력이 존재하면 J-적분은 더 이상 적분경고에 관계없이 인정한 값을 갖는 특성을 잃어버리게 된다. 또한 균질한 재료와는 달리 이종재료 계면균열에서는 균열선난에서 Mode I과 Mode II의 파괴거동이 동시에 발생한다. 그러므로 이종강재 용접접합부 균열의 J-적분 해석을 위해서는 이종강재 용접시 발생하는 잔류응력이 존재하는 경우에도 적분경로에 관계없이 일정한 값을 갖는 새로운 J-적분식이 도입되어야 한다. 따라서 본 연구에서는 기존의 J-적분을 수정하여, 이종강재 용접시 발생하는 잔류응력이 존재하는 경우에 경로 독립성을 유지하는 J-적분을 고찰하고, 이를 이용하여 잔류응력과 외력이 동시에 작용하는 균열선단에서의 J-적분을 해석할 수 있는 프로그램을 개발하였다. 자체개발한 탄소성 해석프로그램을 이용하여 이종강재 용접시 잔류응력과 외력에 대한 응력분포를 계산하였으며, 이를 이용하여 잔류응력과 외력의 복합하중에 대한 J-적분을 계산하였다.

판 두께와 볼트 크기를 고려한 고장력 볼트 이음부의 극한 거동 (Ultimate Behavior of High-Tension Bolted Joints Considering Plate Thickness and Bolt Size)

  • 김성보;최종경;허인성
    • 한국전산구조공학회논문집
    • /
    • 제21권5호
    • /
    • pp.515-524
    • /
    • 2008
  • 본 연구에서는 판 두께와 볼트 크기에 따른 고장력 볼트 마찰이음부의 극한 거동을 비선형 유한 요소 해석 및 실험을 통하여 분석하였다. 볼트의 크기 및 모재의 두께가 고장력 볼트 마찰이음부에 끼치는 영향을 미끄러짐 하중, 볼트의 변형 및 파괴하중과의 관계와 함께 파악하였다. M20, M22, M24의 세가지 볼트와 모재의 두께가 12mm, 16mm, 20mm, 30mm, 40mm인 경우에 대하여 압축력을 받는 고장력 볼트 이음부의 극한 거동을 고찰하였다. 이음부의 힘-변위 관계 및 외력-변형도 관계를 실험적으로 도출하였으며 범용 유한요소해석 프로그램인 ABAQYS를 사용한 수치해석 결과와 비교, 분석하였다.

Finite element modelling of the shear behaviour of profiled composite walls incorporating steel-concrete interaction

  • Anwar Hossain, K.M.;Wright, H.D.
    • Structural Engineering and Mechanics
    • /
    • 제21권6호
    • /
    • pp.659-676
    • /
    • 2005
  • The novel form of composite walling system consists of two skins of profiled steel sheeting with an in-fill of concrete. The behaviour of such walling under in-plane shear is important in order to utilise this system as shear elements in a steel framed building. Steel sheet-concrete interface governs composite action, overall behaviour and failure modes of such walls. This paper describes the finite element (FE) modelling of the shear behaviour of walls with particular emphasis on the simulation of steel-concrete interface. The modelling of complex non-linear steel-concrete interaction in composite walls is conducted by using different FE models. Four FE models are developed and characterized by their approaches to simulate steel-concrete interface behaviour allowing either full or partial composite action. Non-linear interface or joint elements are introduced between steel and concrete to simulate partial composite action that allows steel-concrete in-plane slip or out of plane separation. The properties of such interface/joint elements are optimised through extensive parametric FE analysis using experimental results to achieve reliable and accurate simulation of actual steel-concrete interaction in a wall. The performance of developed FE models is validated through small-scale model tests. FE models are found to simulate strength, stiffness and strain characteristics reasonably well. The performance of a model with joint elements connecting steel and concrete layers is found better than full composite (without interface or joint elements) and other models with interface elements. The proposed FE model can be used to simulate the shear behaviour of composite walls in practical situation.

Load-carrying capacity degradation of reinforced concrete piers due to corrosion of wrapped steel plates

  • Gao, Shengbin;Ikai, Toyoki;Ni, Jie;Ge, Hanbin
    • Steel and Composite Structures
    • /
    • 제20권1호
    • /
    • pp.91-106
    • /
    • 2016
  • Two-dimensional elastoplastic finite element formulation is employed to investigate the load- carrying capacity degradation of reinforced concrete piers wrapped with steel plates due to occurrence of corrosion at the pier base. By comparing with experimental results, the employed finite element analysis method is verified to be accurate. After that, a series of parametric studies are conducted to investigate the effect of corrosion ratio and corrosion mode of steel plates located near the base of in-service pier P2 on load-carrying capacity of the piers. It is observed that the load-carrying capacity of the piers decreases with the increase in corrosion ratio of steel plates. There exists an obvious linear relationship between the load-carrying capacity and the corrosion ratio in the case of even corrosion mode. The degradation of load-carrying capacity resulted from the web's uneven corrosion mode is more serious than that under even corrosion mode, and the former case is more liable to occur than the latter case in actual engineering application. Finally, the failure modes of the piers under different corrosion state are discussed. It is found that the principal tensile strain of concrete and yield range of steel plates are distributed within a wide range in the case of slight corrosion, and they are concentrated on the column base when complete corrosion occurs. The findings obtained from the present study can provide a useful reference for the maintenance and strengthening of the in-service piers.

Dynamic response of a base-isolated CRLSS with baffle

  • Cheng, Xuansheng;Liu, Bo;Cao, Liangliang;Yu, Dongpo;Feng, Huan
    • Structural Engineering and Mechanics
    • /
    • 제66권3호
    • /
    • pp.411-421
    • /
    • 2018
  • Although a rubber isolation cushion can reduce the dynamic response of a structure itself, it has little influence on the height of a sloshing wave and even may induce magnification action. Vertical baffles are set into a base-isolated Concrete Rectangular Liquid Storage Structure (CRLSS), and baffles are opened as holes to increase the energy dissipation of the damping. Problems of liquid nonlinear motion caused by baffles are described using the Navier-Stokes equation, and the space model of CRLSS is established considering the Fluid-Solid Interaction (FSI) based on the Finite Element Method (FEM). The dynamic response of an isolated CRLSS with various baffles under an earthquake is analyzed, and the results are compared. The results show that when the baffle number is certain, the greater the number of holes in baffles, the worse the damping effects; when a single baffle with holes is set in juxtaposition and double baffles with holes are formed, although some of the dynamic response will slightly increase, the wallboard strain and the height of the sloshing wave evidently decrease. A configuration with fewer holes in the baffles and a greater number of baffles is more helpful to prevent the occurrence of two failure modes: wallboard leakage and excessive sloshing height.

Computational and experimental characterization of estrogenic activities of 20(S, R)-protopanaxadiol and 20(S, R)-protopanaxatriol

  • Zhang, Tiehua;Zhong, Shuning;Hou, Ligang;Wang, Yongjun;Xing, XiaoJia;Guan, Tianzhu;Zhang, Jie;Li, Tiezhu
    • Journal of Ginseng Research
    • /
    • 제44권5호
    • /
    • pp.690-696
    • /
    • 2020
  • Background: As the main metabolites of ginsenosides, 20(S, R)-protopanaxadiol [PPD(S, R)] and 20(S, R)-protopanaxatriol [PPT(S, R)] are the structural basis response to a series of pharmacological effects of their parent components. Although the estrogenicity of several ginsenosides has been confirmed, however, the underlying mechanisms of their estrogenic effects are still largely unclear. In this work, PPD(S, R) and PPT(S, R) were assessed for their ability to bind and activate human estrogen receptor α (hERα) by a combination of in vitro and in silico analysis. Methods: The recombinant hERα ligand-binding domain (hERα-LBD) was expressed in E. coli strain. The direct binding interactions of ginsenosides with hERα-LBD and their ERα agonistic potency were investigated by fluorescence polarization and reporter gene assays, respectively. Then, molecular dynamics simulations were carried out to simulate the binding modes between ginsenosides and hERα-LBD to reveal the structural basis for their agonist activities toward receptor. Results: Fluorescence polarization assay revealed that PPD(S, R) and PPT(S, R) could bind to hERα-LBD with moderate affinities. In the dual luciferase reporter assay using transiently transfected MCF-7 cells, PPD(S, R) and PPT(S, R) acted as agonists of hERα. Molecular docking results showed that these ginsenosides adopted an agonist conformation in the flexible hydrophobic ligand-binding pocket. The stereostructure of C-20 hydroxyl group and the presence of C-6 hydroxyl group exerted significant influence on the hydrogen bond network and steric hindrance, respectively. Conclusion: This work may provide insight into the chemical and pharmacological screening of novel therapeutic agents from ginsenosides.

Overlay Tester를 이용한 그리드 보강 아스팔트 포장의 반사균열 저항성 평가 (Evaluation of Reflection Cracking Resistance of Grid-Reinforced Asphalt Pavement Using Overlay Tester)

  • 유병수;서우진;김조순;박대욱
    • 한국도로학회논문집
    • /
    • 제18권1호
    • /
    • pp.57-62
    • /
    • 2016
  • PURPOSES : Reflection cracking has been one of the major causes of distress when asphalt pavement is laid on top of concrete pavement. This study evaluated the reflection cracking resistance of asphalt mixtures reinforced with asphalt embedded glass fiber and carbon fiber using a Texas Transportation Institute (TTI) overlay tester. METHODS : Different asphalt mixtures such as polymer-modified mastic asphalt (PSMA) and a dense graded asphalt mixture were reinforced with asphalt-embedded carbon fiber and glass fiber. For comparison purposes, two PSMA asphalt mixtures and one dense graded asphalt mixture were evaluated without fiber reinforcement. Two different overlay test modes, the repeated overlay test (R-OT) and monotonic overlay test (M-OT), were used to evaluate the reflection cracking resistance of asphalt mixtures at $0^{\circ}C$. In the R-OT test, the number of repeated load when the specimen failed was obtained. In the M-OT test, the tensile strength at the peak load and tensile strain were obtained. RESULTS : As expected, the fiber-reinforced asphalt mixture showed a higher reflection cracking resistance than the conventional nonreinforced asphalt mixtures based on the R-OT test and M-OT test. The dense graded asphalt mixture showed the least reflection cracking resistance and less resistance than the PSMA. CONCLUSIONS : The TTI overlay tester could be used to differentiate the reflection cracking resistance values of asphalt mixtures. Based on the R-OT and M-OT results, the carbon-fiber-reinforced asphalt mixture showed the highest reflection cracking resistance among the nonreinforced asphalt mixtures and glass-fiber-reinforced asphalt mixture.

초음파 탄성 영상 알고리듬 (Algorithms for Ultrasound Elasticity Imaging)

  • 권성재
    • 비파괴검사학회지
    • /
    • 제32권5호
    • /
    • pp.484-493
    • /
    • 2012
  • 초음파를 사용해 음속도, 감쇠 계수, 밀도, 비선형 B/A 파라미터 등을 측정하여 인체 조직의 특성을 정량적으로 영상화하고자 하는 연구가 1980년대부터 많이 진행되어 왔으나 아직 상용화 단계에는 도달하지 못했다. 하지만 1990년대 초에 시작된 탄성 영상법은 최근 들어 초음파 진단기에 상용화되어 임상에서 B-모드 영상법과 함께 전립선, 유방, 갑상선, 간, 혈관 등을 진단하기 위한 보완적이며 더 정량적인 모드로 사용되고 있는 단계에 진입하였다. 본고에서는 주로 준정적 또는 정적탄성 영상법에 사용되는 여러 가지 알고리듬을 소개하고 특성을 비교하고자 한다. 대부분의 알고리듬은 상호상관함수 또는 자기상관함수 방법에 그 기반을 두고 있으며 전자는 래그를 변화시켜가면서 시간 이동량을 찾지만 후자는 보간 과정 없이 고정된 래그에서의 위상차로부터 시간 이동량을 바로 구해 변위를 추정하는 점이다.

표면 부착형 PZT소자에 의해 유발된 판 구조물의 램파 전달 해석을 위한 스펙트럼 요소 정식화 (Spectral Element Formulation for Analysis of Lamb Wave Propagation on a Plate Induced by Surface Bonded PZT Transducers)

  • 임기룡;김은진;강주성;박현우
    • 한국소음진동공학회논문집
    • /
    • 제18권11호
    • /
    • pp.1157-1169
    • /
    • 2008
  • This paper presents spectral element formulation which approximates Lamb wave propagation by PZT transducers bonded on a thin plate. A two layer beam model under 2-D plane strain condition is introduced to simulate high-frequency dynamic responses induced by a piezoelectric (PZT) layer rigidly bonded on a base plate. Mindlin-Herrmann and Timoshenko beam theories are employed to represent the first symmetric and anti-symmetric Lamb wave modes on a base plate, respectively. The Euler-Bernoulli beam theory and 1-D linear piezoelectricity are used to model the electro-mechanical behavior of a PZT layer. The equations of motions of a two layer beam model are derived through Hamilton's principle. The necessary boundary conditions associated with the electro-mechanical properties of a PZT layer are formulated in the context of dual functions of a PZT layer as an actuator and a sensor. General spectral shape functions of response field and the associated boundary conditions are obtained through equations of motions converted into frequency domain. Detailed spectrum element formulation for composing the dynamic stiffness matrix of a two layer beam model is presented as well. The validity of the proposed spectral element is demonstrated through numerical examples.

Experimental study on steel-concrete composite beams with Uplift-restricted and slip-permitted screw-type (URSP-S) connectors

  • Duan, Linli;Chen, Hongbing;Nie, Xin;Han, Sanwei
    • Steel and Composite Structures
    • /
    • 제35권2호
    • /
    • pp.261-278
    • /
    • 2020
  • In steel-concrete composite beams, to improve the cracking resistance of the concrete slab in the hogging moment region, a new type of connector in the interface, named uplift-restricted and slip-permitted screw-type (URSP-S) connector has been proposed. This paper focuses on the behavior of steel-concrete composite beams with URSP-S connectors. A total of three beam specimens including a simply supported beam with URSP-S connectors and two continuous composite beams with different connectors arrangements were designed and tested. More specifically, one continuous composite beam was equipped with URSP-S connectors in negative moment region and traditional shear studs in other regions. For comparison, the other one was designed with only traditional shear studs. The failure modes, crack evolution process, ultimate capacities, strain responses at different locations as well as the interface slip of the three tested specimens were measured and evaluated in-depth. Based on the experimental study, the research findings indicate that the larger slip deformation is allowed while using URSP-S connectors. Meanwhile, the tensile stress reduces and the cracking resistance of the concrete slab improves accordingly. In addition, the overall stiffness and strength of the composite beam become slightly lower than those of the composite beam using traditional shear studs. Moreover, the arrangement suggestion of URSP-S connectors in the composite beam is discussed in this paper for its practical design and application.