• 제목/요약/키워드: strain hardening

검색결과 855건 처리시간 0.022초

일괄 풀림처리된 강판의 예비 변형정도에 따른 소열경화 특성 (Bake hardenability of batch annealed steel sheets with prestrain)

  • 허훈;황필상
    • 오토저널
    • /
    • 제12권1호
    • /
    • pp.40-48
    • /
    • 1990
  • Bake hardenability of batch annealed steel sheets is investigated in connection with the amount of tensile deformation and the bake hardening condition. This study associates with the method for producing bake hardening materials by means of batch annealing process and for measuring bake hardenability which is not yet fully established. The experimental result demonstrates the relationship between strain distribution and bake hardening behavior in various bake hardening conditions, which provides an essential information for automobile design and related sheet metal forming in a press shop. The result also shows the bake hardenability of the tested material increases as the baking temperature is increased from 150.deg. C. The result assures the bake hardening materials can guarantee reasonably high strength as well as good uniformity in yield strength for the automobile body by sheet metal forming process.

  • PDF

INFLUENCE OF ALLOY COMPOSITION ON WORK HARDENING BEHAVIOR OF ZIRCONIUM-BASED ALLOYS

  • Kim, Hyun-Gil;Kim, Il-Hyun;Park, Jeong-Yong;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제45권4호
    • /
    • pp.505-512
    • /
    • 2013
  • Three types of zirconium base alloy were evaluated to study how their work hardening behavior is affected by alloy composition. Repeated-tensile tests (5% elongation at each test) were performed at room temperature at a strain rate of $1.7{\times}10^{-3}s^{-1}$ for the alloys, which were initially controlled for their microstructure and texture. After considering the yield strength and work hardening exponent (n) variations, it was found that the work hardening behavior of the zirconium base alloys was affected more by the Nb content than the Sn content. The facture mode during the repeated tensile test was followed by the slip deformation of the zirconium structure from the texture and microstructural analysis.

Generalization and implementation of hardening soil constitutive model in ABAQUS code

  • Bo Songa;Jun-Yan Liu;Yan Liu;Ping Hu
    • Geomechanics and Engineering
    • /
    • 제36권4호
    • /
    • pp.355-366
    • /
    • 2024
  • The original elastoplastic Hardening Soil model is formulated actually partly under hexagonal pyramidal Mohr-Coulomb failure criterion, and can be only used in specific stress paths. It must be completely generalized under Mohr-Coulomb criterion before its usage in engineering practice. A set of generalized constitutive equations under this criterion, including shear and volumetric yield surfaces and hardening laws, is proposed for Hardening Soil model in principal stress space. On the other hand, a Mohr-Coulumb type yield surface in principal stress space comprises six corners and an apex that make singularity for the normal integration approach of constitutive equations. With respect to the isotropic nature of the material, a technique for processing these singularities by means of Koiter's rule, along with a transforming approach between both stress spaces for both stress tensor and consistent stiffness matrix based on spectral decomposition method, is introduced to provide such an approach for developing generalized Hardening Soil model in finite element analysis code ABAQUS. The implemented model is verified in comparison with the results after the original simulations of oedometer and triaxial tests by means of this model, for volumetric and shear hardenings respectively. Results from the simulation of oedometer test show similar shape of primary loading curve to the original one, while maximum vertical strain is a little overestimated for about 0.5% probably due to the selection of relationships for cap parameters. In simulation of triaxial test, the stress-strain and dilation curves are both in very good agreement with the original curves as well as test data.

지반재료의 비등방경화 구성모델에 대한 응력적분 알고리즘 (Stress Integration Algorithm for an Anisotropic Hardening Constitutive Model of Geomaterials)

  • 오세붕;이진구;김태경
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.343-350
    • /
    • 2005
  • A constitutive model was implemented in ABAQUS code. The constitutive equation can model the behavior for overall range of strain level from small to large deformation, which is based on anisotropic hardening rule and total stress concept. The formulation includes (1) finite strain formulation on the basis of Jaumann rate, (2) implicit stress integration and (3) consistent tangent moduli. Therefore the mathematical background was established in order that large deformation analysis can be performed accurately and efficiently with the anisotropic constitutive model. In the large deformation analyses, geometric nonlinearity was considered and the result of analyses with the proposed model was compared with that of Mises model for the overall strain range behavior.

  • PDF

Tensile strain-hardening behaviors and crack patterns of slag-based fiber-reinforced composites

  • Kwon, Seung-Jun;Choi, Jeong-Il;Nguyen, Huy Hoang;Lee, Bang Yeon
    • Computers and Concrete
    • /
    • 제21권3호
    • /
    • pp.231-237
    • /
    • 2018
  • A strain-hardening highly ductile composite based on an alkali-activated slag binder and synthetic fibers is a promising construction material due to its excellent tensile behavior and owing to the ecofriendly characteristics of its binder. This study investigated the effect of different types of synthetic fibers and water-to-binder ratios on the compressive strength and tensile behavior of slag-based cementless composites. Alkali-activated slag was used as a binder and water-to-binder ratios of 0.35, 0.45, and 0.55 were considered. Three types of fibers, polypropylene fiber, polyethylene (PE) fiber, and polyparaphenylene-benzobisethiazole (PBO) fiber, were used as reinforcing fibers, and compression and uniaxial tension tests were performed. The test results showed that the PE fiber series composites exhibited superior tensile behavior in terms of the tensile strain capacity and crack patterns while PBO fiber series composites had high tensile strength levels and tight crack widths and spacing distances.

연속 회전 등통로각압축 공정의 유한요소해석 (Finite Element Analysis of Continuous Rotary-Die Equal Channel Angular Pressing)

  • 윤승채;서민홍;김형섭
    • 소성∙가공
    • /
    • 제15권7호
    • /
    • pp.524-528
    • /
    • 2006
  • Although equal channel angular pressing (ECAP), imposing large plastic shear strain deformation by moving a workpiece through two intersecting channels, is a promising severe plastic deformation method for grain refinement of metallic materials, its batch type characteristic makes ECAP inefficient for multiple-passing. Rotary-die ECAP (RDECAP) proposed by Nishida et al. can achieve high productivity by using continuous processing without taking out the samples from the channel. However, plastic deformation behavior during RD-ECAP has not been investigated. In this study, material plastic flow and strain hardening behavior of the workpiece during RD-ECAP was investigated using the finite element method. It was found that plastic deformation becomes inhomogeneous with the number of passes due to an end effect, which was not found seriously in ECAP. Especially, decreasing corner gap with increasing the number of passes was observed and explained by the strain hardening effect.

구형석출물을 갖는 무한 고체에 전수압이 가해지는 경우에 대한 탄소성해 (An elasto-plastic solution for infinite solid containing a spherical precipitate under hydrostatic pressure)

  • 최병익;엄윤용
    • 대한기계학회논문집
    • /
    • 제5권2호
    • /
    • pp.122-130
    • /
    • 1981
  • Equation of equilibrium is derived and solved for an infinite isotropic solid under applied hydrostatic stress which is uniform at large distance, and disturbed by a spherical precipitate which has isotropoc elastic constants dirrerent form those of the matrix. A linear strain hardening behavior of the matrix is assumed, and an elasto-plastic sloution is obtained. The difference of the total strain energy stored inthe infinite solid with and without a precipitate is computed, and compared with that for purely elastic case. Finally the effect of the ratio of the bulk modulus of the precipitate to that of the matrix and the effct of linear strain hardening rate on the plastic zone size and the energy difference are discussed.

TiAl 금속간 화합물의 미세조직에 따른 고온변형특성 (High Temperature Deformation Behavior of Ti-Al Intermetallic Compound - Microstructure Effect)

  • 하태권;정재영;이광석;장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.295-298
    • /
    • 2003
  • High temperature deformation behavior of a Ti-Al intermetallic compound has been investigated. Specimens with a near gamma and a lamella structures were obtained by performing heat treatment at 1200 and 1330$^{\circ}C$, respectively, for 24 hr and stabilized at 900$^{\circ}C$ for 4 hr followed by air cooling. A series of load relaxation tests has been conducted on these samples at temperatures ranging from 850 to 950$^{\circ}C$ to construct flow curves in the strain rate range from 10$\^$-6//s to 10$\^$-3//s. Strain hardening was observed even at the temperature of 950$^{\circ}C$ in both the near gamma and the lamella structures. Further aging treatment for 12 hr at test temperatures has found to cause no softening in both microstructures.

  • PDF

초기함수비 변화에 의한 풍화잔류토의 응력-변형률 해석 (Analysis of Stress-Strain of Weathered Residual Granite Soil with Variation of the Initial Water Content)

  • 김찬기
    • 한국농공학회지
    • /
    • 제41권2호
    • /
    • pp.80-91
    • /
    • 1999
  • This paper presents the stress-strain , volumetric strain characteristics of the Pocheon weathered residual granite soil with variation of the initial water content under drained conditions. A series of consolidated drained triaxial compressiion tests and isotrpc compression tests with various initial water content on specimens were performed. All material parameters of Lade's double work hardening model were determined by using the results of tests. Most aspects of the soil behavior measured in the triaxial compression tests were reproduced with good accuracy by the constitutive model . Therefore double work hardening model has been shown to be applicable to weathered residual granite soil.

  • PDF

$K_0$조건하 거동에 대한 유효응력 구성모델 (An Effective Stress Based Constitutive Model on the Behavior under $K_0$ Condition)

  • 오세붕;김욱;박희범
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.121-128
    • /
    • 2004
  • A constiutive model was proposed in order to model dilatancy under $K_0$ conditions. The model includes an anisotropic hardening rule with bounding surface and hypothetical peak stress ratio and dilatancy function which are dependent on a state parameter. The triaxial stress-strain relationship under $K_0$ conditions was calculated reasonably by the proposed model. In particular the model could consistently predict dilatancy in volume change, softening with peak strength and small strain behavior.

  • PDF