• 제목/요약/키워드: strain data

검색결과 2,173건 처리시간 0.032초

티타늄 합금의 변형률속도 및 온도를 고려한 인공신경망 기반 경화모델 성능평가 (Evaluation of Performance of Artificial Neural Network based Hardening Model for Titanium Alloy Considering Strain Rate and Temperature)

  • 김민기;임성식;김용배
    • 소성∙가공
    • /
    • 제33권2호
    • /
    • pp.96-102
    • /
    • 2024
  • This study addresses evaluation of performance of hardening model for a titanium alloy (Ti6Al4V) based on the artificial neural network (ANN) regarding the strain rate and the temperature. Uniaxial compression tests were carried out at different strain rates from 0.001 /s to 10 /s and temperatures from 575 ℃ To 975 ℃. Using the experimental data, ANN models were trained and tested with different hyperparameters, such as size of hidden layer and optimizer. The input features were determined with the equivalent plastic strain, strain rate, and temperature while the output value was set to the equivalent stress. When the number of data is sufficient with a smooth tendency, both the Bayesian regulation (BR) and the Levenberg-Marquardt (LM) show good performance to predict the flow behavior. However, only BR algorithm shows a predictability when the number of data is insufficient. Furthermore, a proper size of the hidden layer must be confirmed to describe the behavior with the limited number of the data.

Low Cycle Fatigue Life Assessment of Alloy 617 Weldments at 900℃ by Coffin-Manson and Strain Energy Density-Based Models

  • Rando, Tungga Dewa;Kim, Seon-Jin
    • 동력기계공학회지
    • /
    • 제21권1호
    • /
    • pp.43-49
    • /
    • 2017
  • This work aims to investigate on the low cycle fatigue life assessment, which is adopted on the strain-life relationship, or better known as the Coffin-Manson relationship, and also the strain energy density-based model. The low cycle fatigue test results of Alloy 617 weldments under $900^{\circ}C$ have been statistically estimated through the Coffin-Manson relationship according to the provided strain profile. In addition, the strain energy density-based model is proposed to represent the energy dissipated per cycle as fatigue damage parameter. Based on the results, Alloy 617 weldments followed the Coffin-Manson relationship and strain energy density-based model well, and they were compatible with the experimental data. The predicted lives based on these two proposed models were examined with the experimental data to select a proper life prediction parameter.

보 구조물에서 변형률 계측 데이터를 활용한 디지털트윈 모델 구현 (Digital Twin Model of a Beam Structure Using Strain Measurement Data)

  • 한만석;신수봉;문태욱;김다운;이종한
    • 한국BIM학회 논문집
    • /
    • 제9권3호
    • /
    • pp.1-7
    • /
    • 2019
  • Digital twin technology has been actively developed to monitor and assess the current state of actual structures. The digital twin changes the traditional observation method performed in the field to the real-time observation and detection system using virtual online model. Thus, this study designed a digital twin model for a beam and examined the feasibility of the digital twin for bridges. To reflect the current state of the bridge, model updating was performed according to the field test data to construct an analysis model. Based on the constructed bridge analysis model, the relationship between strain and displacement was used to represent a virtual model that behaves in the same way as the actual structure. The strain and displacement relationship was expressed as a matrix derived using an approximate analytical theory. Then, displacements can be obtained using the measured data obtained from strain sensors installed on the bridge. The coordinates of the obtained displacements are used to construct a virtual digital model for the bridge. For verification, a beam was fabricated and tested to evaluate the digital twin model constructed in this study. The displacements obtained from the strain and displacement relationship agrees well with the actual displacements of the beam. In addition, the displacements obtained from the virtual model was visualized at the locations of the strain sensor.

지진유발 변형률 데이터의 분포 특성 분석을 위한 응용통계기법의 적용 (Application of Statistical Analysis to Analyze the Spatial Distribution of Earthquake-induced Strain Data)

  • 김보람;채병곤;김용제;서용석
    • 지질공학
    • /
    • 제23권4호
    • /
    • pp.353-361
    • /
    • 2013
  • 본 연구에서는 ${\bigcirc}{\bigcirc}$지역 토목용 계측기에서 측정된 지진유발 변형률 데이터의 분포 특성을 분석하기 위한 기법으로 응용통계기법에 대한 적용성을 평가하였다. 2011년 도호쿠 대지진과 같은 해에 발생한 규모 7.0 이상의 여진을 계측한 4방향의 변형률 데이터를 활용하였다. 데이터의 미세한 변동을 감지하기 위하여 단변량 분석기법인 x-MR 분석을 실시하였으며 분석결과 계측 데이터 간의 분산시점에 차이가 발생하는 것을 확인하였다. 이러한 분산시점의 차이를 해결하기 위하여 변형률 데이터 간의 상관성을 고려한 다변량 통계분석을 실시하였다. 다변량 분석기법 가운데 하나인 주성분 분석결과를 $T_2$과 Q-통계량 분석에 적용하여 신뢰구간 99.9%, 99.0%, 95.0%로 실시간 분석을 수행하였다. 분석결과 $T_2$과 Q-통계량 값이 신뢰구간 99.9%를 초과하는 시점은 x-MR 분석의 분산시점과 일치하거나 이른 시간으로 나타났다. 또한, 신뢰구간 95.0%와 99.0%를 초과하는 시점은 99.9%를 초과하는 시점 이전에 타점되어 지진발생 전에 이상 분포 발생을 예측할 수 있었다. 이러한 결과는 변형률 데이터의 비정상적인 분포 특성을 다변량 통계분석법으로 인지할 수 있다는 것을 의미한다. 따라서 다변량 통계분석은 변형률 데이터의 분포 특성을 분석하여 지진을 예지하는 방법으로 이용가능하다고 판단된다.

주조 알루미늄합금 A356의 저주기 피로특성 및 피로수명 모델 (Low Cycle Fatigue Characteristics of A356 Cast Aluminum Alloy and Fatigue Life Models)

  • 고승기
    • 한국자동차공학회논문집
    • /
    • 제1권1호
    • /
    • pp.131-139
    • /
    • 1993
  • Low cycle fatigue characteristics of cast aluminum alloy A356 with a yield strength and ultimate strength of 229 and 283 MPa respectively was evaluated using smooth axial specimen under strain controlled condition. Reversals to failure ranged from 16 to 107. The cast aluminum alloy exhibited cyclically strain-gardening behavior. The results of low cycle fatigue tests indicated that the conventional low cycle fatigue tests indicated that the conventional low cycle fatigue life model was not a satisfactory representation of the data. This occurred because the elastic strain-life curve was not-log-log linear and this phenomena caused a nonconservative and unsafe fatigue life prediction at both extremes of long and short lives. A linear log-log total strain-life model and a bilinear log-log elastic strain-life model were proposed in order to improve the representation of data compared to the conventional low cycle fatigue life model. Both proposed fatigue life models were statistically analyzed using F tests and successfully satisfied. However, the low cycle fatigue life model generated by the bilinear log-log elastic strain-life equation yielded a discontinuous curve with nonconservatism in the region of discontinuity. Among the models examined, the linear log-log total strain-life model provided the best representation of the low cycle fatigue data. Low cycle fatigue life prediction method based on the local strain approach could conveniently incorporated both proposed fatigue life models.

  • PDF

스트레인 링 이론 기반의 팔각링 로드셀 개발 (Development of Octagonal Ring Load Cell Based on Strain Rings)

  • 김중선;조형근;왕덕현
    • 한국기계가공학회지
    • /
    • 제17권4호
    • /
    • pp.97-103
    • /
    • 2018
  • Force is a crucial element to be measured in various industries, especially the machine tool industry. Mega units of force are required in fields such as the heavy and ship industries. Micro/nano units of force are required for microparticles. The detection of force generates a physical transformation due to the force imposed from the outside, atlrnd electrical voltage signals are obtained from the system. For the detection of force, an octagonal ring load cell based on circular ring theory is designed and produced. To design the octagonal strain ring, theoretical values with data from the ANSYS program are compared to determine the size of the octagonal strain ring. An octagonal strain ring of the chosen size is made with the SCM415 material. The strain gauges are attached to the octagonal strain ring, designed to construct a full Wheatstone bridge. The LabVIEW program is used to measure the data, and strain values are found. With the octagonal ring load cell completed in this way, experiments are conducted by imposing forces on the tangential axis and radial axis. Experiments are performed to verify if the octagonal ring load cell conducts measurements properly, and theoretical values are analyzed to find any differences. The data will later be used in further research to develop a machine-tool dynamometer.

Temperature effect analysis of a long-span cable-stayed bridge based on extreme strain estimation

  • Yang, Xia;Zhang, Jing;Ren, Wei-Xin
    • Smart Structures and Systems
    • /
    • 제20권1호
    • /
    • pp.11-22
    • /
    • 2017
  • The long-term effect of ambient temperature on bridge strain is an important and challenging problem. To investigate this issue, one year data of strain and ambient temperature of a long-span cable-stayed bridge is studied in this paper. The measured strain-time history is decomposed into two parts to obtain the strains due to vehicle load and temperature alone. A linear regression model between the temperature and the strain due to temperature is established. It is shown that for every $1^{\circ}C$ increase in temperature, the stress is increased by 0.148 MPa. Furthmore, the extreme value distributions of the strains due to vehicle load, temperature and the combination effect of them during the remaining service period are estimated by the average conditional exceedance rate approach. This approach avoids the problem of declustering of data to ensure independence. The estimated results demonstrate that the 95% quantile of the extreme strain distribution due to temperature is up to $1.488{\times}10^{-4}$ which is 2.38 times larger than that due to vehicle load. The study also indicates that the estimated extreme strain can reflect the long-term effect of temperature on bridge strain state, which has reference significance for the reliability estimation and safety assessment.

A trilinear stress-strain model for confined concrete

  • Ilki, Alper;Kumbasar, Nahit;Ozdemir, Pinar;Fukuta, Toshibumi
    • Structural Engineering and Mechanics
    • /
    • 제18권5호
    • /
    • pp.541-563
    • /
    • 2004
  • For reaching large inelastic deformations without a substantial loss in strength, the potential plastic hinge regions of the reinforced concrete structural members should be confined by adequate transverse reinforcement. Therefore, simple and realistic representation of confined concrete behaviour is needed for inelastic analysis of reinforced concrete structures. In this study, a trilinear stress-strain model is proposed for the axial behaviour of confined concrete. The model is based on experimental work that was carried out on nearly full size specimens. During the interpretation of experimental data, the buckling and strain hardening of the longitudinal reinforcement are also taken into account. The proposed model is used for predicting the stress-strain relationships of confined concrete specimens tested by other researchers. Although the proposed model is simpler than most of the available models, the comparisons between the predicted results and experimental data indicate that it can represent the stress-strain relationship of confined concrete quite realistically.

Computational modelling for description of rubber-like materials with permanent deformation under cyclic loading

  • Guo, Z.Q.;Sluys, L.J.
    • Interaction and multiscale mechanics
    • /
    • 제1권3호
    • /
    • pp.317-328
    • /
    • 2008
  • When carbon-filled rubber specimens are subjected to cyclic loading, they do not return to their initial state after loading and subsequent unloading, but exhibit a residual strain or permanent deformation. We propose a specific form of the pseudo-elastic energy function to represent cyclic loading for incompressible, isotropic materials with stress softening and residual strain. The essence of the pseudo-elasticity theory is that material behaviour in the primary loading path is described by a common elastic strain energy function, and in unloading, reloading or secondary unloading paths by a different strain energy function. The switch between strain energy functions is controlled by the incorporation of a damage variable into the strain energy function. An extra term is added to describe the permanent deformation. The finite element implementation of the proposed model is presented in this paper. All parameters in the proposed model and elastic law can be easily estimated based on experimental data. The numerical analyses show that the results are in good agreement with experimental data.

Comparison of Two-Equation Model and Reynolds Stress Models with Experimental Data for the Three-Dimensional Turbulent Boundary Layer in a 30 Degree Bend

  • Lee, In-Sub;Ryou, Hong-Sun;Lee, Seong-Hyuk;Chae, Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제14권1호
    • /
    • pp.93-102
    • /
    • 2000
  • The objective of the present study is to investigate the pressure-strain correlation terms of the Reynolds stress models for the three dimensional turbulent boundary layer in a $30^{\circ}$ bend tunnel. The numerical results obtained by models of Launder, Reece and Rodi (LRR) , Fu and Speziale, Sarkar and Gatski (SSG) for the pressure-strain correlation terms are compared against experimental data and the calculated results from the standard k-${\varepsilon}$ model. The governing equations are discretized by the finite volume method and SIMPLE algorithm is used to calculate the pressure field. The results show that the models of LRR and SSG predict the anisotropy of turbulent structure better than the standard k-${\varepsilon}$ model. Also, the results obtained from the LRR and SSG models are in better agreement with the experimental data than those of the Fu and standard k-${\varepsilon}$ models with regard to turbulent normal stresses. Nevertheless, LRR and SSG models do not effectively predict pressure-strain redistribution terms in the inner layer because the pressure-strain terms are based on the locally homogeneous approximation. Therefore, to give better predictions of the pressure-strain terms, non-local effects should be considered.

  • PDF