• Title/Summary/Keyword: strain data

Search Result 2,185, Processing Time 0.032 seconds

Endurance Life and Deformation Behavior under Thermo-mechanical Fatigue of Nb-added Heat Resistant Austenitic Stainless Steel (Nb 첨가 오스테나이트계 내열 스테인리스강의 열기계적 피로 수명 및 변형 거동)

  • Oh, Yong Jun;Park, Joong-Cheul;Yang, Won Jon
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.7
    • /
    • pp.541-548
    • /
    • 2011
  • Thermomechanical fatigue (TMF) behavior of heat resistant austenitic stainless steel was evaluated in the temperature range from 100$^{\circ}C$ to peak temperatures of 600 to 800$^{\circ}C$; The fatigue lives under TMF conditions were plotted against the plastic strain range and the dissipated energy per cycle. In the expression of the inelastic strain range versus fatigue life, the TMF data obtained at different temperature ranges were located close to a single line with a small deviation; however, when the dissipated energy per cycle, calculated from the area of the stress-strain hysteresis loops at the half of the fatigue life, was plotted against the fatigue life, the data showed greater scattering than the TMF life against the inelastic strain range. A noticeable stress relaxation in the stress-strain hysteresis curve took place at the peak temperatures higher than 700$^{\circ}C$, but all specimens in this study exhibited cyclic hardening behavior with TMF cycles. Recrystallization occurred during the TMF cycle concurrent with the formation of fine subgrains in the recrystallized region, which is considered to cause the cyclic hardening of the steel.

A simple creep constitutive model for soft clays based on volumetric strain characteristics

  • Chen, G.;Zhu, J.G.;Chen, Z.;Guo, W.L.
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.615-626
    • /
    • 2022
  • The soft clays are widely distributed, and one of the prominent engineering problems is the creep behavior. In order to predict the creep deformation of soft clays in an easier and more acceptable way, a simple creep constitutive model has been proposed in this paper. Firstly, the triaxial creep test data indicated that, the strain-time (𝜀-t) curve showing in the 𝜀-lgt space can be divided into two lines with different slopes, and the time referring to the demarcation point is named as tEOP. Thereafter, the strain increments occurred after the time tEOP are totally assumed to be the creep components, and the elastic and plastic strains had occurred before tEOP. A hyperbolic equation expressing the relationship between creep volumetric strain, stress and time is proposed, with several triaxial creep test data of soft clays verifying the applicability. Additionally, the creep flow law is suggested to be similar with the plastic flow law of the modified Cam-Clay model, and the proposed volumetric strain equation is used to deduced the scaling factor for creep strains. Therefore, a creep constitutive model is thereby established, and verified by successfully predicting the creep principal strains of triaxial specimens.

Advances in Non-Interference Sensing for Wearable Sensors: Selectively Detecting Multi-Signals from Pressure, Strain, and Temperature

  • Byung Ku Jung;Yoonji Yang;Soong Ju Oh
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.340-351
    • /
    • 2023
  • Wearable sensors designed for strain, pressure, and temperature measurements are essential for monitoring human movements, health status, physiological data, and responses to external stimuli. Notably, recent research has led to the development of high-performance wearable sensors using innovative materials and device structures that exhibit ultra-high sensitivity compared with their commercial counterparts. However, the quest for accurate sensing has identified a critical challenge. Specifically, the mechanical flexibility of the substrates in wearable sensors can introduce interference signals, particularly when subjected to varying external stimuli and environmental conditions, potentially resulting in signal crosstalk and compromised data fidelity. Consequently, the pursuit of non-interference sensing technology is pivotal for enabling independent measurements of concurrent input signals related to strain, pressure, and temperature, ensuring precise signal acquisition. In this comprehensive review, we present an overview of the recent advances in noninterference sensing strategies. We explore various fabrication methods for sensing strain, pressure, and temperature, emphasizing the use of hybrid composite materials with distinct mechanical properties. This review contributes to the understanding of critical developments in wearable sensor technology that are vital for their ongoing application and evolution in numerous fields.

Development of a Program for Consolidation Analysis Using Nonlinear Finite Strain Consolidation Theory (비선형 유한변형률 압밀이론을 이용한 압밀 해석 프로그램 개발)

  • Lee, Song;Lee, Kyu-Hwan;Jeon, Je-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.02a
    • /
    • pp.36-47
    • /
    • 1999
  • Terzaghi's theory of one-dimensional consolidation is restricted in its applicability to relatively thin layers and small incremental loading. Because it is assumed to infinitesimal strain and linear material function. For this reason, Gibson et al established a rigorous formulation for the one-dimensional nonlinear finite strain consolidation theory. There are some difficulties in the application of finite strain consolidation theory. The developed program consisted of several forms and modules. These forms and modules with graphic-user-interfaced format are used in analysis of consolidation practices. For the purpose of verification of developed program. the results of case study and prediction of developed program are compared. The results of comparison is fairly well with prediction and measured data. And with varying finite strain consolidation parameter, g(e) or λ(e), the sensitivity of predicted values were examined.

  • PDF

A Study on the In-plane Displacement Measurement of Spot welded Joints by Electronic Speckle Pattern Interferometry Method (레이저 스패클 간섭법에 의한 점 용접부의 면내변위 측정에 관한연구)

  • 성백섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.48-53
    • /
    • 1997
  • Electronic Speckle Pattern Interferometry(ESPI) using the Model 95 Ar laserm, a video system and an image processor was applied to the in-plane displacement measurements. Unlike traditional strain gauges or moire method, ESPI method requires no special surface preparation or attachments and can be measured in-plane displacement with no contact and real time. In this experiment wpecimen was loaded in parallel with a loadcell. The specimen was the cold rolled sdteel sheet of 2mm thickness, which was attached strain gauges. The study provides an example of how ESPI have been used to measure strain displacement in this specimen. The results measured by ESPI have been used to measure strain displacement in this specimen. The results measured by ESPI have been used to measure strain displacement in this specimen. The results measured by ESPI compare with the data which was measured by strain gauge method in tensile testing.

  • PDF

Finite Element Damage Analysis Method for J-Resistance Curve Prediction of Cold-Worked Stainless Steels (조사취화를 모사한 스테인레스강의 파괴저항선도를 예측하기위한 유한요소 손상해석기법)

  • Seo, Jun Min;Kim, Ji Soo;Kim, Yun Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • Materials in nuclear power plants can be embrittled by neutron irradiation. According to existing studies, the effect of the material property by irradiation embrittlement can be approximately simulated by cold working (pre-strain). In this study, finite element damage analysis method using the stress-modified fracture strain model is proposed to predict J-Resistance curves of irradiated SUS316 stainless steel. Experimental data of pre-strained SUS316 stainless steel material are obtained from literature and the damage model is determined by simulating the tensile and fracture toughness tests. In order to consider damage caused by the pre-strain, a pre-strain constant is newly introduced. Experimental J-Resistance curves for various degrees of pre-strain are well predicted.

Dynamic Strain Aging on the Leak-Before-Break Analysis in SA106 Gr.C Piping Steel

  • Kim, Jin-Weon;Kim, In-Sup
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.193-198
    • /
    • 1996
  • The effect of dynamic strain aging (DSA) on the leak-before-break (LBB) analysis was estimated through the evaluation of leakage-size-crack and flaw stability in SA106 Gr.C piping steel. Also. the results were represented as a form of "LBB allowable load window". In the DSA temperature region. the leakage-size-crack length was smaller than that at other temperatures and it increased with increasing tensile strain rate. In the results of flaw stability analysis. the lowest instability load appeared at the temperature corresponding to minimum J- R curve which was caused by DSA. The instability load near the plant operating temperature depended on the loading rate of J-R data. and decreased with increasing tensile strain rate. These are due to the strain hardening characteristic and strain rate sensitivity of DSA. In the "LBB allowable load window". LBB allowable region was the narrowest at the temperature and loading conditions where DSA occurs.

  • PDF

THERMAL EFFECTS ON THE STRAIN ENERGY RELEASE RATE FOR EDGE DELAMINATION IN CRACKED LAMINATED COMPOSITES

  • Soutis, C.;Kashtalyan, M.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.1-6
    • /
    • 2001
  • In this paper, edge delaminations in cracked composite plates are analytically investigated. A theoretical model based upon a sub-laminate approach is used to determine the strain energy release rate, $G^{ed}$, in [$\pm$$\theta_m$/$90_n$]$_s$ carbon/epoxy laminates loaded in tension. The analysis provides closed-form expressions for the reduced stiffness due to edge delamination and matrix cracking and the total energy release rate. The parameters controlling the laminate behaviour are identified. It is shown that the available energy for edge delamination is increased notably due to transverse ply cracking. Also thermal stresses increase substantially the strain energy release rate and this effect is magnified by the presence of matrix cracking. Prediction for the edge delamination onset strain is presented and compared with experimental data. The analysis could be applied to ceramic matrix composite laminates where similar mechanisms develop, but further experimental evidence is required.

  • PDF

Evaluation on the Influence and Measurement of Strain in Spot Welded Joint (점 용접부의 변형률 측정 및 영향 평가)

  • 차용훈
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.3
    • /
    • pp.52-57
    • /
    • 1997
  • Electronic Speckle Pattern Interferometry(ESPI) using the Model 95 Ar. laser, a video system and an image processor was applied to the in-plane displacement measurements. Unlike traditional strain gauges or Moire method, ESPI method requires no special surface preparation or attachments and can be measured in-plane displacement with no special surface preparation or attachments and can be measured in-plane displacement with no contact and real time. In this experiment specimen was loaded in parallel with a loadcell. The specimen was the cold rolled steel sheet of 2mm thickness, which was attached strain gauges. The study provides an example of how ESPI have been used to measure strain displacement in this specimen. The results measured by ESPI compare with the data which was measured by strain gauge method in tensile testing.

  • PDF

Effects of Maximum Strain and Aging Conditions on the Fatigue Life of Vulcanized Natural Rubber (가황 천연고무의 피로수명에 미치는 최대 변형률과 노화도 영향)

  • 우창수;김완두;김완수;권재도
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.181-190
    • /
    • 2004
  • The interest of the fatigue life of rubber components such as engine mounts is increasing according to the extension of warranty period of the automotive components. Automotive engine mounts get damaged due to thermal and mechanical loadings. This paper discusses a fatigue life prediction of the 3-dimensional dumbbell specimens for natural rubber compound considering the effects of maximum strain and heat aging temperature. Displacement controlled fatigue life tests were performed using specimens with different levels of maximum strain and various hardness. The basic mechanical properties test and the fatigue test of aged rubber specimen under normal and elevated temperature were executed. A procedure to predicted the fatigue life of vulcanized natural rubber material based on the maximum strain method was proposed, and then this curve was in good agreement with fatigue test data less than 200% error range.