• Title/Summary/Keyword: strain data

Search Result 2,164, Processing Time 0.026 seconds

Damage Evaluation of a Simply Supported Steel Beam Using Measured Acceleration and Strain Data (가속도 및 변형률 계측데이터를 이용한 철골 단순보 손상평가)

  • Park Soo-Yong;Park Hyo-Seon;Lee Hong-Min;Choi Sang-Hyun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.167-174
    • /
    • 2006
  • In this paper, the applicability of strain data to a strain-energy-based damage evaluation methodology in detecting damage in a beam-like structure is demonstrated. For the purpose of this study, one of the premier damage evaluation methodology based on modal amplitudes, the damage index method, is expanded to accomodate strain data, and the numerical and experimental verifications are conducted using numerical and experimental data. To compare the relative performance of damage detection, the damage evaluation using acceleration data is also performed for the same damage scenarios. The experimental strain and acceleration data are extracted from laboratory static and dynamic tests. The numerical and experimental studies show that the strain data as well as acceleration data can be utilized in detecting damage.

  • PDF

Plastic Displacement Estimates in Creep Crack Growth Testing (크리프 균열 성장 실험을 위한 소성 변위 결정법)

  • Huh Nam-Su;Yoon Kee-Bong;Kim Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1219-1226
    • /
    • 2006
  • The ASTM test standard recommends the use of the compact tension specimen for creep crack growth rates measurement. In the creep crack growth rate test, the displacement rate due to creep is obtained by subtracting the contribution of elastic and plastic components from the total load line displacement rate based on displacement partitioning method fur determining $C^*-integral$, which involves Ramberg-Osgood (R-O) fitting procedures. This paper investigates the effect of the R-O fitting procedures on plastic displacement rate estimates in creep crack growth testing, via detailed two-dimensional and three-dimensional finite element analyses of the standard compact tension specimen. Four different R-O fitting procedures are considered; (i) fitting the entire true stress-strain data up to the ultimate tensile strength, (ii) fitting the true stress-strain data from 0.1% strain to 0.8 of the true ultimate strain, (iii) fitting the true stress-strain data only up to 5% strain, and (iv) fitting the engineering stress-strain data. It is found that the last two procedures provide reasonably accurate plastic displacement rates and thus should be recommended in creep crack growth testing. Moreover, several advantages of fitting the engineering stress-strain data over fitting the true stress-strain data only up to 5% strain are discussed.

Effect of post processing of digital image correlation on obtaining accurate true stress-strain data for AISI 304L

  • Angel, Olivia;Rothwell, Glynn;English, Russell;Ren, James;Cummings, Andrew
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3205-3214
    • /
    • 2022
  • The aim of this study is to provide a clear and accessible method to obtain accurate true-stress strain data, and to extend the limited material data beyond the ultimate tensile strength (UTS) for AISI 304L. AISI 304L is used for the outer construction for some types of nuclear transport packages, due to its post-yield ductility and high failure strain. Material data for AISI 304L beyond UTS is limited throughout literature. 3D digital image correlation (DIC) was used during a series of uniaxial tensile experiments. Direct method extracted data such as true strain and instantaneous cross-sectional area throughout testing such that the true stress-strain response of the material up to failure could be created. Post processing of the DIC data has a considerable effect on the accuracy of the true stress-strain data produced. Influence of subset size and smoothing of data was investigated by using finite element analysis to inverse model the force displacement response in order to determine the true stress strain curve. The FE force displacement response was iteratively adapted, using subset size and smoothing of the DIC data. Results were validated by matching the force displacement response for the FE model and the experimental force displacement curve.

An Indentation Theory Based on FEA Solutions for Property Evaluation (유한요소해에 기초한 물성평가 압입이론)

  • Lee, Hyeong-Il;Lee, Jin-Haeng
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1685-1696
    • /
    • 2001
  • A novel indentation theory is proposed by examining the data from the incremental plasticity theory based finite element analyses. First the optimal data acquisition location is selected, where the strain gradient is the least and the effect of friction is negligible. This data acquisition point increases the strain range by a factor of five. Numerical regressions of obtained data exhibit that strain hardening exponent and yield strain are the two main parameters which govern the subindenter deformation characteristics. The new indentation theory successfully provides the stress-strain curve with an average error less than 5%.

A Novel Indentation Theory Based on Incremental Plasticity Theory (증분소성이론에 준한 새 압입이론)

  • Lee, Hyung-Yil;Lee, Jin-Haeng
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.185-192
    • /
    • 2000
  • A novel indentation theory is proposed by examining the data from the incremental plasticity theory based finite element analyses. First the optimal data acquisition location is selected, where the strain gradient is the least and the effect of friction is negligible. This data acquisition point increases the strain range by a factor of five. Numerical regressions of obtained data exhibit that strain hardening exponent and yield strain are the two main parameters which govern the subindenter deformation characteristics. The new indentation theory successfully provides the stress-strain curve with an average error less than 3%.

  • PDF

Development of Data Acquisition System for Strain Gauge Sensor (스트레인게이지 센서용 데이터획득시스템의 개발)

  • Cho, Si-Hyeong;Park, Chan-Won
    • Journal of Industrial Technology
    • /
    • v.30 no.A
    • /
    • pp.89-93
    • /
    • 2010
  • This research suggested a development of a Data Acquisition System for strain gauge sensor which enables the usage of portable device in the various engineering field that includes, a strain indicator which is frequently used in civil and mechanical engineering, and a GUI function of data acquisition device. The developed system can record 16 channels of strain gauges at a time and its resolution is over 16 bits which can be used effectively in the actual field.

  • PDF

Multiscale features and information extraction of online strain for long-span bridges

  • Wu, Baijian;Li, Zhaoxia;Chan, Tommy H.T.;Wang, Ying
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.679-697
    • /
    • 2014
  • The strain data acquired from structural health monitoring (SHM) systems play an important role in the state monitoring and damage identification of bridges. Due to the environmental complexity of civil structures, a better understanding of the actual strain data will help filling the gap between theoretical/laboratorial results and practical application. In the study, the multi-scale features of strain response are first revealed after abundant investigations on the actual data from two typical long-span bridges. Results show that, strain types at the three typical temporal scales of $10^5$, $10^2$ and $10^0$ sec are caused by temperature change, trains and heavy trucks, and have their respective cut-off frequency in the order of $10^{-2}$, $10^{-1}$ and $10^0$ Hz. Multi-resolution analysis and wavelet shrinkage are applied for separating and extracting these strain types. During the above process, two methods for determining thresholds are introduced. The excellent ability of wavelet transform on simultaneously time-frequency analysis leads to an effective information extraction. After extraction, the strain data will be compressed at an attractive ratio. This research may contribute to a further understanding of actual strain data of long-span bridges; also, the proposed extracting methodology is applicable on actual SHM systems.

The Pre-Evaluation of Stability during Tunnel Excavation using Unconfined Compression Strength of Intact Rock or Rock Mass and Crown Settlement Data (터널천단변위와 암석 또는 암반의 일축압축강도를 이용한 시공 중인 터널의 예비 안정성 평가)

  • Park, Young Hwa;Moon, Hong Duk;Ha, Man Bok
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.27-32
    • /
    • 2015
  • PURPOSES : It is difficult to estimate tunnel stability because of lack of timely information during tunnel excavation. Tunnel deformability refers to the capacity of rock to strain under applied loads or unloads during tunnel excavation. This study was conducted to analyze a methods of pre-evaluation of stability during tunnel construction using the critical strain concept, which is applied to the results of tunnel settlement data and unconfined compression strength of intact rock or rock mass at the tunnel construction site. METHODS : Based on the critical strain concept, the pre-evaluation of stability of a tunnel was performed in the Daegu region, at a tunnel through andesite and granite rock. The critical strain concept is a method of predicting tunnel behavior from tunnel crown settlement data using the critical strain chart that is obtained from the relationship between strain and the unconfined compression strength of intact rock in a laboratory. RESULTS : In a pre-evaluation of stability of a tunnel, only actually measured crown settlement data is plotted on the lower position of the critical strain chart, to be compared with the total displacement of crown settlement, including precedent settlement and displacement data from before the settlement measurement. However, both cases show almost the same tunnel behavior. In an evaluation using rock mass instead of intact rock, the data for the rock mass strength is plotted on the lower portion of the critical strain chart, as a way to compare to the data for intact rock strength. CONCLUSIONS : From the results of the pre-evaluation of stability of the tunnel using the critical strain chart, we reaffirmed that it is possible to promptly evaluate the stability of a tunnel under construction. Moreover, this research shows that a safety evaluation using the actual instrumented crown settlement data with the unconfined compression strength of intact rock, rather than with the unconfined compression strength of a rock mass in the tunnel working face, is more conservative.

Application of Neural Network to Prediction of Column Shortening of High-rise Buildings (초고층 건축물의 부등축소량 예측을 위한 뉴랄-네트워크의 적용)

  • Yang, Won-Jik;Lee, Jung-Han;Kim, Ook- Jong;Lee, Do-Bum;Yi, Waon-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.494-497
    • /
    • 2006
  • The objectives of this study are to develop and evaluate the Neural Network algorithm which can predict the inelastic shortening such as the creep strain and the drying shrinkage strain of reinforced concrete members using the previous test data. New learning algorithms for the prediction of creep strain and the drying shrinkage strain are proposed focusing on input layer components and a normalization method for input data and their validity is examined through several test data. In Neural Network algorithm, the main input data to be trained are the compressive strength of the concrete, volume to surface ratio, curing condition, relative humidity, and the applied load. The results show that the new algorithms proposed herein successfully predict creep strain and the drying shrinkage strain.

  • PDF

Strain-based structural condition assessment of an instrumented arch bridge using FBG monitoring data

  • Ye, X.W.;Yi, Ting-Hua;Su, Y.H.;Liu, T.;Chen, B.
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.139-150
    • /
    • 2017
  • The structural strain plays a significant role in structural condition assessment of in-service bridges in terms of structural bearing capacity, structural reliability level and entire safety redundancy. Therefore, it has been one of the most important parameters concerned by researchers and engineers engaged in structural health monitoring (SHM) practices. In this paper, an SHM system instrumented on the Jiubao Bridge located in Hangzhou, China is firstly introduced. This system involves nine subsystems and has been continuously operated for five years since 2012. As part of the SHM system, a total of 166 fiber Bragg grating (FBG) strain sensors are installed on the bridge to measure the dynamic strain responses of key structural components. Based on the strain monitoring data acquired in recent two years, the strain-based structural condition assessment of the Jiubao Bridge is carried out. The wavelet multi-resolution algorithm is applied to separate the temperature effect from the raw strain data. The obtained strain data under the normal traffic and wind condition and under the typhoon condition are examined for structural safety evaluation. The structural condition rating of the bridge in accordance with the AASHTO specification for condition evaluation and load and resistance factor rating of highway bridges is performed by use of the processed strain data in combination with finite element analysis. The analysis framework presented in this study can be used as a reference for facilitating the assessment, inspection and maintenance activities of in-service bridges instrumented with long-term SHM system.