• 제목/요약/키워드: straightness

검색결과 222건 처리시간 0.023초

경로의 직진성을 고려한 턴 휴리스틱 $A^*$ 알고리즘의 구현 (An Implementation of $A^*$ Algorithm with Turn Heuristic for Enhancing the Straightness of a Path)

  • 문대진;조대수
    • 한국정보통신학회논문지
    • /
    • 제11권11호
    • /
    • pp.2072-2077
    • /
    • 2007
  • 사람이 걸을 때와는 달리 차량으로 이동할 경우 좌회전, U턴 등의 방향 전환시 교통신호를 받거나 속도를 줄여야만 하는 지연시간이 존재한다. 동일한 거리를 이동한다면 방향전환이 많은 경로보다 직진 구간이 많은 경로가 목적지에 더 빨리 도착할 가능성이 높다. 기존의 연구 중 이러한 직진성을 고려한 경로탐색은 연구되어 지지 않았다. 이 논문에서는 방향전환이 이루어지는 경로에 대해 가중치를 부여하여 직진성을 높인 경로 탐색 방법을 소개한다. 또한, 기존의 $A^*$ 알고리즘과 이 논문에서 제안하는 휴리스틱을 적용한 알고리즘으로 탐색된 경로를 비교해 보았다. 실험결과 직진성이 약 30% 가량 향상되었으며 이동거리는 약 3.3%가량 축소되는 결과를 보였다.

레이저 프린터용 샤프트 밀폐단조 성형해석 (An Analysis of Closed Die Forging of Laser Printer Shaft by Finite Element Method)

  • 차성훈;신명수;김종호;나승우;김종봉
    • 소성∙가공
    • /
    • 제18권2호
    • /
    • pp.150-155
    • /
    • 2009
  • A shaft for laser printers has to be produced with high dimensional accuracy of a few micrometers. Most companies produce the shaft, therefore, by machining. These days, forging process is tried to be employed in manufacturing the shaft for productivity. In this study, the dimensional inaccuracy of straightness is studied and the underfill is not focused because the shaft shape is simple and the load capacity of press is sufficient. The straightness and concentricity of the shaft is important for the operation of a laser printer. Many design parameters such as preform shapes, tooling dimensions, forging load, and billet geometries may affect on the dimensional accuracy. In the forging process of shafts, a billet which is cut from wires is used. The billet, therefore, may be a little bit curved but not always straight. The elastic recovery is considered to cause the dimensional inaccuracy. Therefore, the effect of the forging load on the elastic recovery and straightness is investigated through the finite element analyses using DEFORM-3D and ABAQUS.

테일러드블랭크 용접을 위한 전단 공정 연구 (A Study on Mechanical Shearing Process for Tailored Blank Welding)

  • 유병길;이경돈
    • Journal of Welding and Joining
    • /
    • 제17권2호
    • /
    • pp.66-75
    • /
    • 1999
  • Weld bead quality in tailored blank(TB) is critically affected by edge preparation of sheets. The edge quality of prepared sheets for TB can be classified into straightness and the cross section quality of sheared plane such as a ratio of shear face, shear plane angle, etc. In order to have a good edg quality for butt-welding sheets, precision shearing will be recommended. In this paper, the feasibility of a conventional mechanical shearing as the edge preparation for tailored blanks is studyied. It reveals that fine shearing may not be the unique solution as it is generally accepted. To obtain the good shearing condition with a conventional mechanical shearing, experiments were carried out using Tahuchi method. The major parameters affecting a sheared contour are the clearance between upper blade and lower blade, and shear angle. The optimal shearing condition yields a very good straightness along the entire length of the cut, which gives a butt joint gap less than 10% of the base material thickness. The good cross section of sheared plane is also achieved in the optimal shearing condition such as a ratio of the shear face above 65%, a cross section's shear plane angle above 85%, little burr, which is providing finally good weld beads.

  • PDF

초경 인서트 드릴의 절삭 조건에 관한 연구 (Cutting Conditions of Carbide Insert Drill)

  • 최성윤;황철웅;이상태
    • 한국기계가공학회지
    • /
    • 제20권6호
    • /
    • pp.10-16
    • /
    • 2021
  • Drilling is a crucial process that takes up a significant amount of weight during machining operations. In addition, drill tip-type tools and related operations have been developed for manufacturing industries to achieve economic efficiency. In this study, SM45C carbon steel, widely used for machine structures, was utilized as the working material after quenching and tempering. Insert-tip types of carbide tools, such as TiN and TiAlN, were used as tool materials. Drilling conditions such as the spindle revolution, feed rate, step of cut, and tool diameter were used to measure roughness, roundness, and straightness using the orthogonal array table statistical method. The surface roughness, roundness, and straightness characteristics based on the conditions were analyzed using ANOVA. The results showed that the spindle speed and feed rate were the main factors influencing carbide insert-tip drilling under the same conditions as the experimental conditions.

수치해석을 이용한 선재 롤러교정공정 주요인자의 직진도 영향 분석 (Parametric Study on Straightness of Steel Wire in Roller Leveling Process Using Numerical Analysis)

  • 방준호;송정한;이명규;이희종;성대용;배기현
    • 소성∙가공
    • /
    • 제31권5호
    • /
    • pp.296-301
    • /
    • 2022
  • In this study, influence of the process parameters of the roller leveling process on the straightness of the steel wire was analyzed using numerical analysis. To construct the numerical analysis model, cross-sectional and longitudinal element sizes, which affect the prediction accuracy of longitudinal stress caused by bending deformation of the steel wire, were optimized, and mass scaling that satisfies prediction accuracy while reducing computational time was confirmed. By using the constructed numerical analysis model, the influence of various process parameters such as input direction of the steel wire, initial diameter of the steel wire, back tension and intermesh on the straightness was confirmed. The simulation result shows that the 3rd and 4th roller of vertical straightener had a significant influence on vertical shape of the steel wire.

유한요소해석과 다구찌 방법을 이용한 알루미늄 7001 소재 파이프의 Roller Levelling 공정 최적화 (Optimization of Roller Levelling Process for Aluminum 7001 Pipes with Finite Element Method and Taguchi Method)

  • 허진혁;이형욱;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.106-109
    • /
    • 2001
  • Process parameters of roller levelling process are intermesh of each roller, roller angle, roller arrangement and shape of rollers. Experimental optimization of these process parameters is very troublesome because of difficulties in evaluating the straightness of pipes to be levelled quantitatively. Finite element method can be a very efficient way to evaluate the straightness of the pipes and therefore to optimize the process. This paper is concerned with simulation and optimization of a roller levelling process. Process parameters of a 14-roller levller for aluminum T9 pipes are optimized with finite element method and Taguchi method. Parameters of significance in roller levelling process and their optimum are obtained.

  • PDF

머시닝센터의 기계능력지수 평가 및 기계특성과의 분석 (Machine Capability Index Evaluation of Machining Center and Comparative Analysis with Machine Property)

  • 홍원표
    • 한국생산제조학회지
    • /
    • 제22권3호
    • /
    • pp.349-355
    • /
    • 2013
  • Recently, there is an increasing need to produce more precise products with small deviations from defined target values. Machine capability is the ability of a machine tool to produce parts within a tolerance interval. Capability indices are a statistical way of describing how well a product is machined compared to defined target values and tolerances. Today, there is no standardized way to acquire a machine capability value. This paper describes a method for evaluating machine capability indices in machining centers. After the machining of specimens, the straightness, roundness, and positioning accuracy were measured by using CMM (coordinate measuring machine). These measured values and defined tolerances were used to evaluate the machine capability indices. It will be useful for the industry to have standardized ways to choose and calculate machine capability indices.

경면가공용 고정밀 CNC 선반 개발 (Development of a high precision CNC lathe for mirror surface machining)

  • 박청홍;이후상;신영재;이군석;김춘배
    • 한국정밀공학회지
    • /
    • 제14권3호
    • /
    • pp.82-88
    • /
    • 1997
  • In this paper, the development of a precision CNC lathe prototype for mirror surface machining is presented. To obtain high precision machining accuracy, a hydrostatically supported precision spindle and a sliding guideway with turcite pad are adopted as the motion elements. The machining accuracy of the prototype machine, and the motional accuracy of its motion elements are tested and evaluated to confirm the validity of the application of these elements on the prototype. The hydrostatic spindle shows 0.09 .mu. m of rotational accuracy and the guideway shows about 0.8 .mu. m/170mm of horizontal straightness. The sur- face roughness of cupper and aluminium cylinder machined by the prototype machine with diamond tool are 0.07 .mu. m and 0.10 .mu. m Rmax respectively. From these results, it is verified that the prototype lathe is avail- able for high precision machining.

  • PDF