• Title/Summary/Keyword: straight highway bridge

Search Result 8, Processing Time 0.025 seconds

Probabilistic seismic demand of isolated straight concrete girder highway bridges using fragility functions

  • Bayat, Mahmoud;Ahmadi, Hamid Reza;Kia, Mehdi;Cao, Maosen
    • Advances in concrete construction
    • /
    • v.7 no.3
    • /
    • pp.183-189
    • /
    • 2019
  • In this study, it has been tried to prepare an analytical fragility curves for isolated straight continues highway bridges by considering different spectral intensity measures. A three-span concrete isolated bridge has been selected and the seismic performance of the bridge has been improved by Lead Rubber Bearing (LRB). Incremental Dynamic Analysis (IDA) is applied to the bridge in longitudinal direction. A suite of 14 earthquake ground motions from medium to sever motions are scaled and used for nonlinear time history analysis. Fragility function considers the relationship of earthquake intensity measures (IM) and probability of exceeding certain Damage State (DS). A full three dimensional finite element model of the isolated bridge has been developed and analyzed. A wide range of different intensity measures are selected and the optimal intensity measure which has the less dispersion is proposed.

Evaluation of Road Asset Value using Alternative Depreciation methods : Focusing on National Highway No.1 (대체적 감가상각기법을 활용한 도로자산의 가치 평가 : 국도 1호선을 중심으로)

  • Do, Myungsik;Park, Sunghwan;Choi, Seunghyun
    • International Journal of Highway Engineering
    • /
    • v.19 no.3
    • /
    • pp.19-30
    • /
    • 2017
  • PURPOSES : This study proposes the road asset valuation approach using alternative depreciation methods. It has become necessary to have asset management system according to the adoption of accrual basis accounting for governmental financial reporting and the amendment of the road act. Therefore, it is very important to analyze the effect of depreciation methods on road asset value as a basic research for road asset management system. METHODS : The Ministry of Strategy and Finance (MOSF) has mainly performed road asset valuation based on Write down Replacement Cost and Straight Line depreciation method. This study suggests some appropriate asset valuation methods for road assets through case analysis using three depreciation methods: Consumption-based depreciation method, Condition-based depreciation method, and Straight Line depreciation method. A road asset valuation data of national highway route 1 (year 2014) is used to analyze the effect of three depreciation methods on the road asset value. Road assets include land and structures (pavement, bridge, and tunnel). This study mainly focuses on structures such as bridges and tunnels, because according to governmental accounting standards, land and road pavement assets do not depreciate. RESULTS : The main results of this study are as follows. Firstly, overall asset value of national highway route 1 was estimated at 6.97 trillion KRW when MOSF's method (straight-line depreciation method) is applied. Secondly, asset value was estimated at 4.85 trillion KRW on application of consumption-based depreciation method. Thirdly, asset value was estimated at 4.37 trillion KRW when condition-based depreciation method is applied. Therefore, either consumption-based or condition-based depreciation methods would be more appropriate than straight-line depreciation method if we can use the condition data of road assets including land that are available in real time. CONCLUSIONS : Since road assets such as pavements, bridges, and tunnels have various patterns of deterioration and condition monitoring period, it is necessary to consider a specific valuation method according to the condition of each road asset. Firstly, even though road pavements do not depreciate, asset valuation through condition-based depreciation method would be more appropriate when requirements for application of non-depreciation approach are not satisfied. Since bridge and tunnel facilities show various patterns of deterioration and condition monitoring period by type and condition level, consumption-based depreciation method based on deterioration model would be appropriate. Therefore, it is necessary to have a reasonable asset management system to apply condition-based depreciation method and a periodic condition investigation to manage road assets well.

Modeling for fixed-end moments of I-sections with straight haunches under concentrated load

  • Soto, Inocencio Luevanos;Rojas, Arnulfo Luevanos
    • Steel and Composite Structures
    • /
    • v.23 no.5
    • /
    • pp.597-610
    • /
    • 2017
  • This paper presents a mathematical model for fixed-end moments of I-sections with straight haunches for the general case (symmetrical and/or non-symmetrical) subjected to a concentrated load localized anywhere on beam taking into account the bending deformations and shear, which is the novelty of this research. The properties of the cross section of the beam vary along its axis "x", i.e., the flange width "b", the flange thickness "t", the web thickness "e" are constant and the height "d" varies along of the beam, this variation is linear type. The compatibility equations and equilibrium are used to solve such problems, and the deformations anywhere of beam are found by the virtual work principle through exact integrations using the software "Derive" to obtain some results. The traditional model takes into account only bending deformations, and others authors present tables considering the bending deformations and shear, but are restricted. A comparison between the traditional model and the proposed model is made to observe differences, and an example of structural analysis of a continuous highway bridge under live load is resolved. Besides the effectiveness and accuracy of the developed models, a significant advantage is that fixed-end moments are calculated for any cross section of the beam "I" using the mathematical formulas.

A Study of the Distortional Effect on Curved Box Girder Bridge (곡선박스거더교의 뒤틀림효과에 대한 연구)

  • Nguyen, Van Ban;Han, Taek-Hee;Kim, Sung-Nam;Kang, Young-Jong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.525-530
    • /
    • 2007
  • Although just developed in recent years, curved box girder has widely used in modern highway system due to their load resistance capacity as well as aesthetic considerations. According to recent literature reviews on curved box girder designs, distortional load was not considered as much as it deserves to be. In practice, the effect of distributional force is very small in straight bridge systems but yet unknown how it is in curved bridge systems. For the reason, this paper will show up an extensive parametric study on distortional behavior of curved box girder with trapezoidal section. Based on Dabrowski formulas, using finite element method, various bridges were investigated. In this study, following parameters will be included: span length, curvature radius, section height, section width, and internal section angle (web slope). From the obtained results, some initial geometric parameters are proposed for curved box girder bridges.

  • PDF

Analysis of seismic response of 3-span continuous curved bridges (3경간 연속곡선교의 지진응답 특성분석)

  • Kim, Sang-Hyo;Lee, Sang-Woo;Cho, Kwang-Il;Park, Boung-Kyu
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.380-387
    • /
    • 2005
  • Little has been understood about the seismic behavior of curved bridges due to the different structural characteristics compared to straight bridges. In this study, a simple numerical model, widely used for seismic analysis, is modified for a more realistic estimation of the seismic behavior. The seismic response of curved bridges obtained with the modified simple numerical model was compared with the result using a more sophisticated model to verify the feasibility. Seismic analyses were performed on three-span continuous curved bridges, which is a structural system widely used in highway structures. Numerical model of the three-span continuous curved bridges were subjected to seismic loads in diverse directions. From the result of the analysis. it was found that the direction of the seismic load have significant effect of the seismic behavior of curved bridges when the central angle exceeds 90 degrees.

  • PDF

Optimum design of multi-span composite box girder bridges using Cuckoo Search algorithm

  • Kaveh, A.;Bakhshpoori, T.;Barkhori, M.
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.705-719
    • /
    • 2014
  • Composite steel-concrete box girders are frequently used in bridge construction for their economic and structural advantages. An integrated metaheuristic based optimization procedure is proposed for discrete size optimization of straight multi-span steel box girders with the objective of minimizing the self-weight of girder. The metaheuristic algorithm of choice is the Cuckoo Search (CS) algorithm. The optimum design of a box girder is characterized by geometry, serviceability and ultimate limit states specified by the American Association of State Highway and Transportation Officials (AASHTO). Size optimization of a practical design example investigates the efficiency of this optimization approach and leads to around 15% of saving in material.

Parametric Study on Trapezoidal Section in Curved Box Girder Bridge Including Distortional Warping (제형 단면을 갖는 곡선 박스거더교량의 뒴 뒤틀림 특성에 대한 매개변수 연구)

  • Nguyen Van, Ban;Kim, Sung-Nam;Kim, Seung-Jun;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.297-302
    • /
    • 2007
  • Although just developed in recent years, curved box girder has widely used in modern highway system due to their load resistance capacity as well as aesthetic considerations. According to recent literature reviews on curved box girder designs, distortional load was not considered as much as it deserves to be. In practice, the effect of distortional force is very small in straight bridge systems but yet unknown how it is in curved bridge systems. For the reason, this paper will show an extensive parametric study on distortional behavior. Based on Dabrowski formulas, using finite element method, various bridges were investigated. In this study, following parameters will be included: span length, curvature radius, section height, section width, and internal section angle (web slope). From the obtained results, some initial geometric parameters are proposed for curved box girder bridges.

  • PDF

Experimental Study on Structural Behavior of Precast PSC Curved Girder Bridge (프리캐스트 PSC 곡선 거더교의 구조거동에 대한 실험적 연구)

  • Kim, Sung Jae;Kim, Sung Bae;Uhm, Ki Ha;Kim, Jang Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1731-1741
    • /
    • 2014
  • Recently, many overpasses, highway, and advanced transit systems have been constructed to distribute the traffic congestion, thus small size of curved bridges with small curvature such as ramp structures have been increasing. Many of early curved bridges had been constructed by using straight beams with curved slabs, but curved steel beams have replaced them due to the cost, aesthetic and the advantage in building the section form and manipulating the curvature of beams, thereby large portion of curved bridges were applied with steel box girders. However, steel box girder bridges needs comparatively high initial costs and continuous maintenance such as repainting, which is the one of the reason for increasing the cost. Moreover, I-type steel plate girder which is being studied by many researchers recently, seem to have problems in stability due to the low torsional stiffness, resulting from the section characteristics with thin plate used for web and open section forms. Therefore, in recent studies, researchers have proposed curved precast PSC girders with low cost and could secured safety which could replace the curved steel girder type bridges. Hence, this study developed a Smart Mold system to manufacture efficient curved precast PSC girders. And by using this mold system a 40 m 2-girder bridge was constructed for a static flexural test, to evaluate the safety and performance under ultimate load. At the manufacturing stage, each single girder showed problems in the stability due to the torsional moment, but after the girders were connected by cross beams and decks, the bridge successfully distributed the stress, thereby the stability was confirmed. The static loading test results show that the initial crack was observed at 1,400 kN when the design load was 450 kN, and the load at the allowable deflection by code was 1,800 kN, which shows that the safety and usability of the curved precast PSC bridge manufactured by Smart Mold system is secured.