• Title/Summary/Keyword: story model

Search Result 803, Processing Time 0.026 seconds

Equivalent lateral force method for buildings with setback: adequacy in elastic range

  • Roy, Rana;Mahato, Somen
    • Earthquakes and Structures
    • /
    • v.4 no.6
    • /
    • pp.685-710
    • /
    • 2013
  • Static torsional provisions employing equivalent lateral force method (ELF) require that the earthquake-induced lateral force at each story be applied at a distance equal to design eccentricity ($e_d$) from a reference resistance centre of the corresponding story. Such code torsional provisions, albeit not explicitly stated, are generally believed to be applicable to the regularly asymmetric buildings. Examined herein is the applicability of such code-torsional provisions to buildings with set-back using rigid as well as flexible diaphragm model. Response of a number of set-back systems computed through ELF with static torsional provisions is compared to that by response spectrum based procedure. Influence of infill wall with a range of opening is also investigated. Results of comprehensive parametric studies suggest that the ELF may, with rational engineering judgment, be used for practical purposes taking some care of the surroundings of the setback for stiff systems in particular.

Seismic response of dual structures comprised by Buckling-Restrained Braces (BRB) and RC walls

  • Beiraghi, Hamid
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.443-454
    • /
    • 2019
  • In order to reduce the residual drift of a structure in structural engineering field, a combined structural system (dual) consisting of steel buckling-restrained braced frame (BRBF) along with shear wall is proposed. In this paper, BRBFs are used with special reinforced concrete shear walls as combined systems. Some prototype models of the proposed combined systems as well as steel BRBF-only systems (without walls) are designed according to the code recommendations. Then, the nonlinear model of the systems is prepared using fiber elements for the reinforced concrete wall and appropriate elements for the BRBs. Seismic responses of the combined systems subjected to ground motions at maximum considered earthquake level are investigated and compared to those obtained from BRBFs. Results showed that the maximum residual inter-story drift from the combined systems is, on average, less than half of the corresponding value of the BRBFs. In this research, mean of absolute values of the maximum inter-story drift ratio demand obtained from combined systems is less than the 3% limitation, while this criterion has not been fulfilled by BRBF systems.

Full-scale tests of two-story RC frames retrofitted with steel plate multi-slit dampers

  • Javidan, Mohammad Mahdi;Nasab, Mohammad Seddiq Eskandari;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.645-664
    • /
    • 2021
  • There is a growing need of seismic retrofit of existing non-seismically designed structures in Korea after the 2016 Gyeongju and 2017 Pohang earthquakes, especially school buildings which experienced extensive damage during those two earthquakes. To this end, a steel multi-slit damper (MSD) was developed in this research which can be installed inside of partition walls of school buildings. Full-scale two-story RC frames were tested with and without the proposed dampers. The frames had structural details similar to school buildings constructed in the 1980s in Korea. The details of the experiments were described in detail, and the test results were validated using the analysis model. The developed seismic retrofit strategy was applied to a case study school building structure, and its seismic performance was evaluated before and after retrofit using the MSD. The results show that the developed retrofit strategy can improve the seismic performance of the structure to satisfy a given target performance level.

Effect of Plan Irregularity and Beam Discontinuity on Structural Performances of Buildings under Lateral Loadings

  • Islam, Md. Rajibul;Chakraborty, Sudipta;Kim, Dookie
    • Architectural research
    • /
    • v.24 no.2
    • /
    • pp.53-61
    • /
    • 2022
  • Irregularities in the structure are crucial factors in screening structural vulnerability under extreme loadings. Numerical analyses were carried out considering wind and seismic loadings for four structures with discrete irregularity: continuous and discontinuous beams with varied story levels, and L-shaped irregular buildings. Structural responses such as maximum displacements, bending moments, axial forces, torsions, and story drifts are evaluated as per the criteria and limits defined by ACI 318. The outcomes indicate that the frame system with beam discontinuity on the upper half of the height exhibits the best structural performance. The results also indicate that the asymmetrical design of the L-shaped model makes it more susceptible to damage when subjected to strong lateral loading conditions.

Damage detection of multistory shear buildings using partial modal data

  • Shah, Ankur;Vesmawala, Gaurang;Meruane, V.
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • This study implements a hybrid Genetic Algorithm to detect, locate, and quantify structural damage for multistory shear buildings using partial modal data. Measuring modal responses at multiple locations on a structure is both challenging and expensive in practice. The proposed method's objective function is based on the building's dynamic properties and can also be employed with partial modal information. This method includes initial residuals between the numerical and experimental model and a damage penalization term to avoid false damages. To test the proposed method, a numerical example of a ten-story shear building with noisy and partial modal information was explored. The obtained results were in agreement with the previously published research. The proposed method's performance was also verified using experimental modal data of an 8-DOF spring-mass system and a five-story shear building. The predicted results for numerical and experimental examples indicated that the proposed method is reliable in identifying the damage for multistory shear buildings.

Analytical Simulation of Shake-Table Responses of a 1:5 Scale 10-story Wall-type RC Residential Building Model (1:5 축소 10층 벽식 RC 공동주택 모델의 진동대실험 응답에 대한 해석적 모사)

  • Lee, Han-Seon;Jeong, Da-Hun;Hwang, Kyung-Ran
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.617-627
    • /
    • 2011
  • This paper presents the results of analytical simulation of shake-table responses of a 1:5 scale 10-story reinforcement concrete(RC) residential building model by using the PERFORM-3D program. The following conclusion are drawn based on the observation of correlation between experiment and analysis; (1) The analytical model simulated fairly well the global elastic behavior under the excitations representative of the earthquake with the return period of 50 years. Under the design earthquake(DE) and maximum considered earthquake(MCE), this model shows the nonlinear behavior, but does not properly simulate the maximum responses, and stiffness and strength degradation in experiment. The main reason is considered to be the assumption of elastic slab. (2) Although the analytical model in the elastic behavior closely simulated the global behavior, there were considerable differences in the distribution of resistance from the wall portions. (3) Under the MCE, the shear deformation of wall was relatively well simulated with the flexural deformation being overestimated by 10 times that of experiment. This overestimation is presumed to be partially due to the neglection of coupling beams in modeling.

Earthquake Simulation Tests on a 1:5 Scale 10-Story R.C. Residential Building Model (1:5 축소 10층 내력벽식 R.C. 공동주택의 지진모의실험)

  • Lee, Han-Seon;Hwang, Seong-Jun;Lee, Kyung-Bo;Kang, Chang-Bum;Lee, Sang-Ho;Oh, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.67-80
    • /
    • 2011
  • This paper presents the results of shaking table tests on a 1:5 scale 10-story R.C. wall-type residential building model. The following conclusions are drawn based on the test results. (1) The model responded linear elastically under the excitations simulating an earthquake with a return period of 50 years, and showed a nonlinear response under the excitations simulating the design earthquake of Korea. (2) The model showed a significant strength drop under the maximum considered earthquake, with a return period of 2400 years. (3) The major portion of the resistance to lateral inertia forces came from the walls used for the elevator and stair case. (4) Finally, the damage and failure modes appear to be due to the flexural behavior of walls and slabs. A significant deterioration of stiffness and an elongation of the fundamental periods were observed under increased earthquake excitations.

Design and Construction of a 1:5 Scale 10-Story R.C. Apartment Building Model for Earthquake Simulation Tests (지진모의실험을 위한 10층 R.C. 공동주택의 1:5 축소모델 설계 및 시공)

  • Hwang, Seong-Jun;Lee, Kyung-Bo;Kang, Chang-Bum;Lee, Han-Seon;Lee, Sang-Ho;Oh, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.55-66
    • /
    • 2011
  • The purpose of this study was to develop an efficient process in the design and construction of a 1:5 scale 10-story R.C. apartment building model for an earthquake simulation test. The reduction ratio of the specimen was determined by the size ($5m{\times}5m$) and pay load (600kN) of the available shaking table and the availability of model reinforcements. For efficiency and quality control of the reinforcement work, prefabrication was used. Construction was conducted in two steps, the wall in one step, and another step for the slab, because it was impossible to remove the formwork of a wall if the walls and slabs in a story were constructed in one step. The slip form construction method was used repetitively for walls. The formwork of a wall was made with veneer and acryl plate on each side, so it was possible to check the quality of the concrete placing. To construct this model, it took roughly six months with five full-time research assistants, for a total of 602 man days of labor in construction.

Wavelet based system identification for a nonlinear experimental model

  • Li, Luyu;Qin, Han;Niu, Yun
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.415-426
    • /
    • 2017
  • Traditional experimental verification for nonlinear system identification often faces the problem of experiment model repeatability. In our research, a steel frame experimental model is developed to imitate the behavior of a single story steel frame under horizontal excitation. Two adjustable rotational dampers are used to simulate the plastic hinge effect of the damaged beam-column joint. This model is suggested as a benchmark model for nonlinear dynamics study. Since the nonlinear form provided by the damper is unknown, a Morlet wavelet based method is introduced to identify the mathematical model of this structure under different damping cases. After the model identification, earthquake excitation tests are carried out to verify the generality of the identified model. The results show the extensive applicability and effectiveness of the identification method.

Reduced Degree of Freedom Modeling for Progressive Collapse Analysis of Tall Buildings using Applied Element Method (응용 요소법을 이용한 초고층 건물의 축소 모델링 연쇄붕괴 해석)

  • Kim, Han-Soo;Wee, Hae-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.599-606
    • /
    • 2014
  • Since progressive collapse of tall buildings can cause enormous damage, it should be considered during the design phase of tall buildings. The progressive collapse analysis of tall buildings using finite element methods is almost impossible due to the vast amount of computing time. In this paper, applied element method was evaluated as an alternative to the finite element method. Reduced DOFs modeling technique was proposed to enable the progressive collapse analysis of tall buildings. The reduced DOFs model include only the part which is subjected to direct damage from blast load and the structural properties such as mass, transferred load and stiffness of excluded parts are accumulated into the top story of the reduced DOFs model. The proposed modeling technique was applied to the progressive collapse analysis of 20-story RC building using three collapse scenarios. The reduced DOFs model showed similar collapse behavior to the whole model while the computing time was reduced by 30%. The proposed modeling technique can be utilized in the progressive collapse analysis of tall buildings due to abnormal loads.