• Title/Summary/Keyword: stormwater wetland

Search Result 33, Processing Time 0.02 seconds

Microbial Influence on Soil Properties and Pollutant Reduction in a Horizontal Subsurface Flow Constructed Wetland Treating Urban Runoff (도시 강우유출수 처리 인공습지의 토양특성 및 오염물질 저감에 따른 미생물 영향 평가)

  • Chiny. C. Vispo;Miguel Enrico L. Robles;Yugyeong Oh;Haque Md Tashdedul;Lee Hyung Kim
    • Journal of Wetlands Research
    • /
    • v.26 no.2
    • /
    • pp.168-181
    • /
    • 2024
  • Constructed wetlands (CWs) deliver a range of ecosystem services, including the removal of contaminants, sequestration and storage of carbon, and enhancement of biodiversity. These services are facilitated through hydrological and ecological processes such as infiltration, adsorption, water retention, and evapotranspiration by plants and microorganisms. This study investigated the correlations between microbial populations, soil physicochemical properties, and treatment efficiency in a horizontal subsurface flow constructed wetland (HSSF CW) treating runoff from roads and parking lots. The methods employed included storm event monitoring, water quality analysis, soil sampling, soil quality parameter analysis, and microbial analysis. The facility achieved its highest pollutant removal efficiencies during the warm season (>15℃), with rates ranging from 33% to 74% for TSS, COD, TN, TP, and specific heavy metals including Fe, Zn, and Cd. Meanwhile, the highest removal efficiency was 35% for TOC during the cold season (≤15℃). These high removal rates can be attributed to sedimentation, adsorption, precipitation, plant uptake, and microbial transformations within the CW. Soil analysis revealed that the soil from HSSF CW had a soil organic carbon content 3.3 times higher than that of soil collected from a nearby landscape. Stoichiometric ratios of carbon (C), nitrogen (N), and phosphorus (P) in the inflow and outflow were recorded as C:N:P of 120:1.5:1 and 135.2:0.4:1, respectively, indicating an extremely low proportion of N and P compared to C, which may challenge microbial remediation efficiency. Additionally, microbial analyses indicated that the warm season was more conducive to microorganism growth, with higher abundance, richness, diversity, homogeneity, and evenness of the microbial community, as manifested in the biodiversity indices, compared to the cold season. Pollutants in stormwater runoff entering the HSSF CW fostered microbial growth, particularly for dominant phyla such as Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroidetes, which have shown moderate to strong correlations with specific soil properties and changes in influent-effluent concentrations of water quality parameters.

A Study on Non-point Source Pollutants from Pavement of Coastal Area and Guidance for Selecting BMP (연안지역 포장면 비점오염물질 유출 및 최적관리방안 시설의 선정을 위한 가이던스에 관한 연구)

  • Ko, Woong;Park, Kisoo;Chen, Yaoping;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.543-553
    • /
    • 2013
  • In Korea, there have been many studies and progresses on various types of pilot scale or commercialized field scale Best Management Practices(BMP) during the last 10 years. Runoff characteristics of diffuse pollutants from different land uses are well identified and documented. However, for the coastal area connected directly with shoreline, runoff patterns and management schemes of non-point pollution were not fully studied. Recently, coastal area is emerging as a new development axis especially in west coast side of Korea such as Incheon city and Chungnam province, thus urbanized area rapidly increased but there are no buffer zones and BMP facilities to aim at preventing direct discharge of the first flush into coastal sea and beaches. In this study, parking area in Deacheon harbor, Boryeong City in Chungnam Province was selected and rainfall runoff was monitored for two year period in order to examine run-off features from which proper type of BMP suitable for coastal area is proposed. Coastal area usually has a low ground water level and consists of plain land, so that large scale BMP such as storm water retention pond and wetland requiring great excavation works is not best management plan. In addition, monitoring study shows that storm water from the paved parking area has a high salinity compared with those in storm water from the inland. High salinity is detrimental for the vegetation. Therefore, BMP employing least vegetative cover and also in terms of maintenance is a good option such as infiltration trench and porous pavement.

Mapping the Research Landscape of Wastewater Treatment Wetlands: A Bibliometric Analysis and Comprehensive Review (폐수 처리 위한 습지의 연구 환경 매핑: 서지학적 분석 및 종합 검토)

  • C. C. Vispo;N. J. D. G. Reyes;H. S. Choi;M.S. Jeon;L. H. Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.2
    • /
    • pp.145-158
    • /
    • 2023
  • Constructed wetlands (CWs) are effective technologies for urban wastewater management, utilizing natural physico-chemical and biological processes to remove pollutants. This study employed a bibliometric analysis approach to investigate the progress and future research trends in the field of CWs. A comprehensive review of 100 most-recently published and open-access articles was performed to analyze the performance of CWs in treating wastewater. Spain, China, Italy, and the United States were among the most productive countries in terms of the number of published papers. The most frequently used keywords in publications include water quality (n=19), phytoremediation (n=13), stormwater (n=11), and phosphorus (n=11), suggesting that the efficiency of CWs in improving water quality and removal of nutrients were widely investigated. Among the different types of CWs reviewed, hybrid CWs exhibited the highest removal efficiencies for BOD (88.67%) and TSS (95.67%), whereas VSSF, and HSSF systems also showed high TSS removal efficiencies (83.25%, and 78.83% respectively). VSSF wetland displayed the highest COD removal efficiency (71.82%). Generally, physical processes (e.g., sedimentation, filtration, adsorption) and biological mechanisms (i.e., biodegradation) contributed to the high removal efficiency of TSS, BOD, and COD in CW systems. The hybrid CW system demonstrated highest TN removal efficiency (60.78%) by integrating multiple treatment processes, including aerobic and anaerobic conditions, various vegetation types, and different media configurations, which enhanced microbial activity and allowed for comprehensive nitrogen compound removal. The FWS system showed the highest TP removal efficiency (54.50%) due to combined process of settling sediment-bound phosphorus and plant uptake. Phragmites, Cyperus, Iris, and Typha were commonly used in CWs due to their superior phytoremediation capabilities. The study emphasized the potential of CWs as sustainable alternatives for wastewater management, particularly in urban areas.