• Title/Summary/Keyword: stormwater

Search Result 350, Processing Time 0.183 seconds

Membrane Biofouling of Seawater Reverse Osmosis Initiated by Sporogenic Bacillus Strain

  • Lee, Jin-Wook;Ren, Xianghao;Yu, Hye-Weon;Kim, Sung-Jo;Kim, In-S.
    • Environmental Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.141-147
    • /
    • 2010
  • The objective of this study was to assess the biofouling characteristics of the Bacillus biofilm formed on reverse osmosis (RO) membranes. For the study, a sporogenic Bacillus sp. was isolated from the seawater intake to a RO process, with two distinct sets of experiments performed to grow the Bacillus biofilm on the RO membrane using a lab-scale crossflow membrane test unit. Two operational feds were used, 9 L sterile-filtered seawater and 109 Bacillus cells, with flow rates of 1 L/min, and a constant 800 psi-pressure and pH 7.6. From the results, the membrane with more fouling, in which the observed permeate flux decreased to 33% of its initial value, showed about 10 and 100 times greater extracellular polymeric substances and spoOA genes expressions, respectively, than the those of the less fouled membrane (flux declined to 20% of its initial value). Interestingly; however, the number of culturable Bacillus sp. in the more fouled membrane was about 10 times less than that of the less fouled membrane. This indicated that while the number of Bacillus had less relevance with respect to the extent of biofouling, the activation of the genes of interest, which is initiative of biofilm development, had a more positive effect on biofouling than the mass of an individual Bacillus bacterium.

Cost-Effectiveness Analysis of Low-Impact Development Facilities to Improve Hydrologic Cycle and Water Quality in Urban Watershed (도시유역의 물순환 및 수질 개선을 위한 저영향개발 시설의 비용 효율 분석)

  • Choi, Jeonghyeon;Kim, Kyungmin;Sim, Inkyeong;Lee, Okjeong;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.3
    • /
    • pp.206-219
    • /
    • 2020
  • As urbanization and impermeable areas have increased, stormwater and non-point pollutants entering the stream have increased. Additionally, in the case of the old town comprising a combined sewer pipe system, there is a problem of stream water pollution caused by the combined sewer overflow. To resolve this problem, many cities globally are pursuing an environmentally friendly low impact development strategy that can infiltrate, evaporate, and store rainwater. This study analyzed the expected effects and efficiency when the LID facility was installed as a measure to improve hydrologic cycle and water quality in the Oncheon stream in Busan. The EPA-SWMM, previously calibrated for hydrological and water quality parameters, was used, and standard parameters of the LID facilities supported by the EPA-SWMM were set. Benchmarking the green infrastructure plan in New York City, USA, has created various installation scenarios for the LID facilities in the Oncheon stream drainage area. The installation and maintenance cost of the LID facility for scenarios were estimated, and the effect of each LID facility was analyzed through a long-term EPA-SWMM simulation. Among the applied LID facilities, the infiltration trench showed the best effect, and the bio-retention cell and permeable pavement system followed. Conversely, in terms of cost-efficiency, the permeable pavement systems showed the best efficiency, followed by the infiltration trenches and bio-retention cells.

Development of Parsimonious Semi-Distributed Hydrologic Partitioning Model Based on Soil Moisture Storages (토양수분 저류 기반의 간결한 준분포형 수문분할모형 개발)

  • Choi, Jeonghyeon;Kim, Ryoungeun;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.3
    • /
    • pp.229-244
    • /
    • 2020
  • Hydrologic models, as a useful tool for understanding the hydrologic phenomena in the watershed, have become more complex with the increase of computer performance. The hydrologic model, with complex configurations and powerful performance, facilitates a broader understanding of the effects of climate and soil in hydrologic partitioning. However, the more complex the model is, the more effort and time is required to drive the model, and the more parameters it uses, the less accessible to the user and less applicable to the ungauged watershed. Rather, a parsimonious hydrologic model may be effective in hydrologic modeling of the ungauged watershed. Thus, a semi-distributed hydrologic partitioning model was developed with minimal composition and number of parameters to improve applicability. In this study, the validity and performance of the proposed model were confirmed by applying it to the Namgang Dam, Andong Dam, Hapcheon Dam, and Milyang Dam watersheds among the Nakdong River watersheds. From the results of the application, it was confirmed that despite the simple model structure, the hydrologic partitioning process of the watershed can be modeled relatively well through three vertical layers comprising the surface layer, the soil layer, and the aquifer. Additionally, discussions were conducted on antecedent soil moisture conditions widely applied to stormwater estimation using the soil moisture data simulated by the proposed model.

Storm-Water CSOs for Reservoir System Designs in Urban Area (도시유역 저류형 시스템 설계를 위한 CSOs 산정)

  • Jo, Deok-Jun;Kim, Myoung-Su;Lee, Jung-Ho;Park, Moo-Jong;Kim, Joong-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1199-1203
    • /
    • 2005
  • Combined sewer overflows(CSOs) are themselves a significant source of water pollution. Therefore, the control of urban drainage for CSOs reduction and receiving water quality protection is needed. Examples in combined sewer systems include downstream storage facilities that detain runoff during periods of high flow and allow the detained water to be conveyed by an interceptor sewer to a centralized treatment plant during periods of low flow. The design of such facilities as stormwater detention storage is highly dependant on the temporal variability of storage capacity available(which is influenced by the duration of interevent dry periods) as well as the infiltration capacity of soil and recovery of depression storage. As a result, a contiunous approach is required to adequately size such facilities. This study for the continuous long-term analysis of urban dranage system used analytical Probabilistic model based on derived probability distribution theory. As an alternative to the modeling of urban drainage system for planning or screening level analysis of runoff control alternatives, this model have evolved that offer much ease and flexibility in terms of computation while considering long-term meteorology. This study presented rainfall and runoff characteristics or the subject area using analytical Probabilistic model. Runoff characteristics manifasted the unique characteristics of the subject area with the infiltration capacity of soil and recovery of depression storage and was examined appropriately by sensitivity analysis. This study presented the average annual COSs and number of COSs when the interceptor capacity is in the range 3xDWF(dry weather flow). Also, calculated the average annual mass of pollutant lost in CSOs using Event Mean Concentration. Finally, this study presented a dicision of storage volume for CSOs reduction and water quality protection.

  • PDF

Spatial prioritization of permeable pavement considering multiple general circulation models: Mokgamcheon watershed (다수의 전지구모형을 고려한 투수성 포장시설의 우선지역 선정: 목감천 유역)

  • Song, Younghoon;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.12
    • /
    • pp.1011-1023
    • /
    • 2019
  • Rapid urbanization increases the risk of hydrologic disasters due to the increase of impervious areas in urban areas. Precipitation characteristics can be transformed due to the rise of global temperatures. Thus urban areas with the increased impervious areas are more exposed to hydrological disasters than ever before. Therefore, low impact development practices have been widely installed to rehabilitate the distorted hydrologic cycle in the urban area. This study used the Stormwater Management Model to analyze the water quantity and quality of the Mokgamcheon which had been severely urbanized, considering future climate scenarios presented by various general circulation models (GCMs). In addition the effectiveness of permeable pavement by 27 sub-watersheds was simulated in terms of water quantity and quality considering various GCMs and then the priorities of sub-watersheds were derived using an alternative valuation index which uses the pressure-state-response framework.

The Characteristics of Water Quality and the Estimation of Pollutant Loadings from the Flowing Streams in Cheju Island (제주도내 유수하천에 대한 수질특성 및 오염부하량 산정)

  • 조은일;오윤근
    • Journal of Environmental Science International
    • /
    • v.7 no.6
    • /
    • pp.845-851
    • /
    • 1998
  • In order to manage the water quality from the flowing streams in Cheju Island, the characteristics of water quality was investigated from August, 1996 to May, 1997 and the pollutant loadings for future were estimated from the watershed at each stream. Comparing the mean concentrations of each water quality with the criterion of water quality in river, it was under I class except for Changgo Stream, for DO, under I class at the whole station for SS and under II class for BOD. As the pollutant loadings at each stream in 2020 is compared with those in 1996, the estimated results are as follows : 1) for BOD, 59% at Donghong Stream, 24% at Yeonoe Stream, 44% at Ohngpo Stream and 57% at Changgo Stream. 2) for T-N, 91% at Donghong Stream, 76% at Yeonoe Stream, 63% at Ohngpo Stream and 89% at Changgo Stream. 3) for T-P, 69% at Donghong Stream, 42% at Yeonoe Stream, 45% at Ohngpo Stream and 73% at Changgo Stream. The point source loadings discharged through combined sewer could be treated at sewage treatment plant. However, the expected slow decreasing rate of BOD, T-N, and T-P loadings is due to the part of untreated nonpoint source loadings. Nonpoint source loading overflow typically occurs when the flow of stormwater combined with sewage exceeds the capacity of the interceptor sewers. Since most of the sewers used in Cheju Island are the combined sewers, the combined overflow sewage is bypassed into the receiving water area after a rainstorm. Therefore, a means to control nonpoint source loadings should be considered for the river and marine water quality management.

  • PDF

Urban Inundation Analysis using the Integrated Model of MOUSE and MIKE21 (MOUSE 및 MIKE21 통합모델을 이용한 도시유역의 침수분석)

  • Choi, Gye-Woon;Lee, Ho-Sun;Lee, So-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.4
    • /
    • pp.75-83
    • /
    • 2007
  • Urbanized area has complex terrain with many flow paths. Almost stormwater is drained through pipe network because most area is impervious. And overland flow from the pipe network reform the surface flow. Therefore, it should be considered the drainage system and surface runoff both in urban inundation analysis. It is analyzed by using MIKE FLOOD integrated 1 dimension - 2 dimension model about Incheon Gyo urbanized watershed and compared with the results of 1 dimension model and 2 dimension model. At the result this approach linking of 2 dimension and 1 dimension pipe hydraulic model in MIKE FLOOD give accuracy that offers substantial improvement over earlier approach and more information about inundation such as water dapth, velocity or risk of flood, because it is possible to present storage of overland flow and topographical characteristic of area.

SS and COD Runoff from a Rice Field Watershed during Storm Events in the Growing and Non-growing Seasons (강우시 영농기와 비영농기의 광역논에서의 부유물질 (SS)과 COD의 유출특성)

  • Lee, Jeong Beom;Lee, Jae Yong;Kim, Jin Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.91-99
    • /
    • 2017
  • The objective of this research was to investigate runoff characteristics of suspended solid (SS) and chemical oxygen demand (COD) from a paddy field watershed during storm events in the growing and non-growing seasons. Average of event mean concentration (EMC) of pollutants were 56.9 mg/L for SS and 23.9 mg/L for COD in the non-growing season and 50.3 mg/L for SS and 11.9 mg/L for COD in the growing season. The average EMC of SS in the study area was much lower than that in the uplands irrespective of cultivation, suggesting that paddy fields control soil erosion. This may be because flooding and wet soil in the growing season, and rice straw residue and stubble on the topsoil in the non-growing season reduce soil erosion. The changing tillage practice from fall tillage to spring tillage avoids soil erosion due to shortening of the tilled fallow period. However, the average EMC of COD in the non-growing season was about twice as much that in the growing season likely due to the runoff of organics like rice straw residues. The relationship between SS and COD loads and stormwater runoff volume was expressed by power function. The exponent for SS was higher than that for COD, suggesting that SS load increased with stormflow runoff more than COD load did. The mean SS and COD loads per storm during the non-growing season were much lower than those in the growing season, and therefore non-point source pollution in the growing season should be managed well.

Analyis of stormwater and runoff characteristics in Anseongcun basin using HEC-HMS (HEC-HMS을 이용한 안성천 유역의 강우 유출 특성 분석)

  • Hwang, Byung-Gi;Yang, Seung-Bin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.17-24
    • /
    • 2018
  • The HEC-HMS model was applied to identify the rainfall-runoff processes for the Anseongchun basin, where the lower part of the stream has been damaged severely by tropical storms in the past. Modeling processes include incorporating with the SCS-CN model for loss, Clark's UH model for transformation, exponential recession model for baseflow, and Muskingum model for channel routing. The parameters were calibrated through an optimization technique using a trial and error method. Sensitivity analysis after calibration was performed to understand the effects of parameters, such as the time of concentration, storage coefficient, and base flow related constants. Two storm water events were simulated by the model and compared with the corresponding observations. Good accuracy in predicting the runoff volume, peak flow, and the time to peak flow was achieved using the selected methods. The results of this study can be used as a useful tool for decision makers to determine a master plan for regional flood control management.

Optimal Operating Condition of Vortex Separator for Combined Sewer Overflows Treatment (합류식 하수관거 월류수 처리를 위한 와류형 분리장치의 최적 운전조건)

  • Han, Jung-kyun;Joo, Jae-young;Lee, Bum-joon;Na, Ji-hun;Park, Chul-hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.557-564
    • /
    • 2009
  • A combined sewer system can quickly drain both storm water and sewage, improve the living environment and resolve flood measures. A combined sewer system is much superior to separate sewer system in reduction of the non-point source pollutant load. However, during rainfall. it is impossible in time, space and economic terms to cope with the entire volume of storm water. A sewage system that exceeds the capacity of the sewer facilities drain into the river mixed with storm-water. In addition, high concentration of CSOs by first-flush increase pollution load and reduce treatment efficiency in sewage treatment plant. The aim of this study was to develope a processing unit for the removal of high CSOs concentrations in relation to water quality during rainfall events in a combined sewer. The most suitable operational design for processing facilities under various conditions was also determined. With a designed discharge of 19.89 m/min, the removal efficiency was good, without excessive overflow, but it was less effective in relation to underflow, and decreased with decreasing particle size and specific gravity. It was necessary to lessen radius of vortex separator for increasing inlet velocity in optimum range for efficient performance, and removal efficiency was considered to high because of rotation increases through enlargement of comparing height of vortex separator in diameter. By distribution of influent particle size, the actual turbulent flow and experimental results was a little different from the theoretical removal efficiency due to turbulent effect in device.