• Title/Summary/Keyword: stormwater

Search Result 350, Processing Time 0.023 seconds

Low Impact Urban Development For Climate Change and Natural Disaster Prevention

  • Lee, Jung-Min;Jin, Kyu-Nam;Sim, Young-Jong;Kim, Hyo-Jin
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.54-55
    • /
    • 2015
  • Increase of impervious areas due to expansion of housing area, commercial and business building of urban is resulting in property change of stormwater runoff. Also, rapid urbanization and heavy rain due to climate change lead to urban flood and debris flow damage. In 2010 and 2011, Seoul had experienced shocking flooding damages by heavy rain. All these have led to increased interest in applying LID and decentralized rainwater management as a means of urban hydrologic cycle restoration and Natural Disaster Prevention such as flooding and so on. Urban development is a cause of expansion of impervious area. It reduces infiltration of rain water and may increase runoff volume from storms. Low Impact Development (LID) methods is to mimic the predevelopment site hydrology by using site design techniques that store, infiltrate, evaporate, detain runoff, and reduction flooding. Use of these techniques helps to reduce off-site runoff and ensure adequate groundwater recharge. The contents of this paper include a hydrologic analysis on a site and an evaluation of flooding reduction effect of LID practice facilities planned on the site. The region of this Case study is LID Rainwater Management Demonstration District in A-new town and P-new town, Korea. LID Practice facilities were designed on the area of rainwater management demonstration district in new town. We performed analysis of reduction effect about flood discharge. SWMM5 has been developed as a model to analyze the hydrologic impacts of LID facilities. For this study, we used weather data for around 38 years from January 1973 to August 2014 collected from the new town City Observatory near the district. Using the weather data, we performed continuous simulation of urban runoff in order to analyze impacts on the Stream from the development of the district and the installation of LID facilities. This is a new approach to stormwater management system which is different from existing end-of-pipe type management system. We suggest that LID should be discussed as a efficient method of urban disasters and climate change control in future land use, sewer and stormwater management planning.

  • PDF

Characteristics and Risk Assessment of Heavy Metals in the Stormwater Runoffs from Industrial Region Discharged into Shihwa Lake (시화호 산업지역 강우유출수 내 중금속 유출특성 및 위해성 평가)

  • Ra, Kongtae;Kim, Joung-Keun;Lee, Jung-Moo;Lee, Seung-Yong;Kim, Eun-Soo;Kim, Kyung-Tae
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.4
    • /
    • pp.283-296
    • /
    • 2014
  • The distribution of heavy metals in the stormwater runoffs from industrial sites around Shihwa Lake that implements the total pollutant load management system (TPLMS) was studied to characterize the temporal changes of metal concentrations and to assess the ecological risk in dissolved and particulate phases of the selected metals. The dissolved Co and Ni concentration demonstrated first flush and tended to decrease with increasing of the duration of rainfall. The intensity of precipitation was found to be the main controlling factor of particulate metals in the stromwater runoffs. The particulate concentration of Pb accounted for 97.2% so the particulate phase was its main form. Other metals followed the sequence: Pb>Cu>Cd>Co>Zn>Ni. The particulate-dissolved partitioning coefficient ($K_d$) indicated that the $K_d$ of Pb were bigger than that of other metals because the metal Pb in the stormwater runoffs is quickly removed into the particulate phase. In a single day rainfall event, total runoff fluxes for total metals as the sum of dissolved and particulate forms through only two sewer outlets were 2.21 kg for Co, 30.5 kg for Ni, 278.3 kg for Cu, 398.3 kg for Zn, 0.39 kg for Cd and 40.0 kg for Pb, respectively. Given the annual rainfall, the number of rain days and the basin area for total pollutant load management system (TPLMS) of Shihwa area, enormous amount of non-point metal pollutants were entered into Lake with any treatment. The dissolved metals (e.g., Ni, Cu and Zn) in the stormwater runoffs exceeded the acute water quality criteria. Additionally, all metals were significantly enriched in the particulate phase and exceeded the PEL criteria of sediment quality guidelines (SQGs). These results indicated that the heavy metals in the stormwater runoffs may pose a very high ecological risk to the coastal environments and ecosystem.

Evaluation of Downflow Granular Media Filtration for Stormwater Treatment (강우유출수에 의한 비점오염 저감을 위한 하향류식 입상여과 효율 평가)

  • Lim, Chan-Su;Kim, Do-Gun;Ko, Seok-Oh
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.10
    • /
    • pp.684-693
    • /
    • 2012
  • The stormwater runoff from the increasing paved roads and vehicles resulted in the increase in the pollutants load to adjacent water bodies. The granular media filtration facilities are the most widely adopted to minimize the non-point source pollution from motorways. It is essential to consider the severe variation of hydraulic condition, suspended solid (SS) characteristics, and the medium characteristics for stormwater management filter. In this study, different types of media, including sand, were tested and the performance of downflow sand filters was investigated under various linear velocity and influent solid particle size. Results showed that the best medium is the coarse sand with large grain size, which showed the specific SS removal before clogging of more than $8.498kg/m^2$, the SS removal of higher than 95%, and minimum head loss. Linear velocity did not affect the total solid removal, while the performance was improved when fine solid was introduced. It is suggested that the life of a downflow sand filter bed can be extended by deep bed filtration when influent particles are fine. However, the captured particles can be washed out after a long period of operation.

Size Determination Method of Bio-Retention Cells for Mimicking Natural Flow Duration Curves (자연상태 유황곡선 보전을 위한 생태저류지 용량결정방법)

  • Lee, Okjeong;Jang, Suhyung;Kim, Hongtae;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.424-431
    • /
    • 2016
  • LID facilities like bio-retention cells is applied to manage stormwater. LID concept becomes an important part in stormwater management, and the clear understanding of hydrologic performance and hydrologic impact on the corresponding catchment has been needed. In this study, the application of flow duration curves as design strategy is investigated. Bio-retention cells like many LID facilities are installed to reproduce natural hydrologic processes. In this study, the attempt to determine the size of a bio-retention cell is carried out to satisfy the flow duration criteria. From the results, it is shown that "5 mm * the area of a target catchment" which is the current facility design capacity is valid for the drainage area with 20-30% impervious rate. In the 100% impervious catchment where LID facilities are typically installed, the design capacity to intercept stormwater of approximately 47 mm depth is required to reproduce natural flow duration curves. This means that about 11% of the target catchment area should be allocated as a bio-retention cell. However, the criteria of the design capacity and facility surface area should be set at the possible implementation conditions in reality, and site-specific hydrologic characteristics of a target catchment should be considered.

Parameter estimations to improve urban planning area runoff prediction accuracy using Stormwater Management Model (SWMM) (SWMM을 이용한 도시계획지역 유출량 예측 정확도 향상을 위한 매개변수 산정)

  • Koo, Young Min;Seo, Dongil
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.5
    • /
    • pp.303-313
    • /
    • 2017
  • In environmental impact assessments for large urban development projects, the Korean government requires analysis of stormwater runoff before, during and after the projects. Though hydrological models are widely used to analyze and prepare for surface runoff during storm events, accuracy of the predicted results have been in question due to limited amount of field data for model calibrations. Intensive field measurements have been made for storm events between July 2015 and July 2016 at a sub-basin of the Gwanpyung-cheon, Daejeon, Republic of Korea using an automatic monitoring system and also additional manual measurements. Continuous precipitation and surface runoff data used for utilization of SWMM model to predict surface runoff during storm events with improved accuracy. The optimal values for Manning's roughness coefficient and values for depression storage were estimated for pervious and impervious surfaces using three representative infiltration methods; the Curve Number Methods, the Horton's Method and the Green-Ampt Methods. The results of the research is expected to be used more efficiently for urban development projects in Korea.

Development of Integrated Management System of Stormwater Retention and Treatment in Waterside Land for Urban Stream Environment (도시 하천 환경 관리를 위한 제외지 초기 강우 처리 및 저류 시설 종합 관리 시스템 개발)

  • Yin, Zhenhao;Koo, Youngmin;Lee, Eunhyoung;Seo, Dongil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.2
    • /
    • pp.126-135
    • /
    • 2015
  • Increase of delivery effect of pollutant loads and surface runoff due to urbanization of catchment area results in serious environmental problems in receiving urban streams. This study aims to develop integrated stormwater management system to assist efficient urban stream flow and water quality control using information from the Storm Water Management Model (SWMM), real time water level and quality monitoring system and remote or automatic treatment facility control system. Based on field observations in the study site, most of the pollutant loads are flushed within 4 hours of the rainfall event. SWMM simulation results indicates that the treatment system can store up to 6 mm of cumulative rainfall in the study catchment area, and this means any type of normal rainfall situation can be treated using the system. Relationship between rainfall amount and fill time were developed for various rainfall duration for operation of stormwater treatment system in this study. This study can further provide inputs of river water quality model and thus can effectively assist integrated water resources management in urban catchment and streams.

The Study on the Analysis of Stormwater Runoff Using RMS (Remote Monitoring System) (원격수위계측기를 이용한 강우유출 분석에 관한 연구)

  • Ham, Kwang-Jun;Kim, Joon-Hyun;Yi, Geon-Ho;Choi, Ji-Yong;Jeong, Ui-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.13 no.6
    • /
    • pp.285-294
    • /
    • 2004
  • The purpose of this study is to understand the quantitative change of water resources using RMS(Remote Monitoring System) which takes real time data with high reliability. Also, the characteristic of stormwater runoff was understood by the application of the above system for three streams (Jiam, Yulmun, and Gongji stream) in Chuncheon City. The detailed results of these studies are as follows; RMS(Remote Monitoring System) was constructed by the combination of the automatic water-level meter, which measures water-level of streams at all times, and the wireless communication system sending real-time data from the meter. This system is used to evaluate the stormwater runoff in watersheds and the quantitative changes of streams. It is possible to overcome the limit of field investigations needed, which takes a lot of manpower and time, and it is very efficient to provide the reliable flowrate data. Also, it can be applied to the disaster prevention system for flood because the change of flowrate in stream is monitored at real-time. For 3 streams with different watershed characteristics, correlation equations induced from the relation analysis results. In terms of the relation between water-level and flowrate, flowrate was increased rapidly as the water-level rises in case of small watershed and steep slope. The application results of the proposed system for 3 streams (Jiam, Yulmun, Gongji) in Chuncheon city are as follows; The remote monitoring system was very useful for acquisition of the flow rate in stream that are basic data to understand pollutants runoff in watershed. In case of no-rainy day, the runoff ratio for pollutant loading rate was the highest level in Yulmun stream(BOD:2.3%, TN:20.2%, TP:1.2%). So, it shows the management of pollution source is needed such as rehabilitation of sewer line. Runoff ratio of total phosphorus by rainfall in Gongji watershed was increased about 19 times than no-rainy day, which is estimated as the influence of sewer overflow.

Development of a Sustainable First Flush Management System for Urban Stream Water Quality Management (도시 하천 수질 관리를 위한 지속가능 초기 강우 오염 관리 시스템의 개발)

  • Seo, Dongil;Lee, Tongeun;Kim, Jaeyoung;Koo, Youngmin
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.4
    • /
    • pp.247-255
    • /
    • 2016
  • Non-point pollutants from surface runoff during rainfall exert adverse effects on urban river water quality management. In particular, the first flush effect during the initial phase of rainfall can deliver significant amounts of pollutant loads to surface waters with extremely high concentrations. In this study, a sustainable first flush effect management system was developed by using settling and filtration that require no additional power or chemicals. A pilot scale experiment has shown that the removal of total suspended solid (TSS), total nitrogen (TN) and total phosphorus (TP) are in ranges of 84 - 95%, 31 - 46%, and 42 - 86%, respectively. An Integrated Stormwater Runoff Management System (ISTORMS) was also developed to efficiently manage the developed system by linking weather forecast, flow rate and water quality modeling of surface runoff and automatic monitoring systems in fields and in the system. This study can provide effective solutions for the management of urban river in terms of both quantity and quality.

Sediments and Design Considerations in the Forebay of Stormwater Wetland (강우유출수 처리목적 인공습지 침강지의 퇴적물 특성 및 설계 적정성에 관한연구)

  • Park, Kisoo;Cheng, Jing;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.14 no.2
    • /
    • pp.223-235
    • /
    • 2012
  • In this paper, field study results about accumulation of sediments and its property in the forebay of wetland aiming at stormwater from rural area wherein intensive cow feeding lots are operated are provided. In addition, some design aspects are discussed. Amount of sediment generation in the longitudinal direction of forebay was found to be affected by hydrological factors such as rainfall depth and intensity. Nutrient contents in the sediments of this wetland were 10 times higher than those in stormwater wetland in rural area without animal-feeding lot. Total-Pb and As contents show similar level to values from the soils of surrounding watershed, but Total-Cu content was higher due to the animal feeding lots. Yearly amount of sediment generation, its depth and volume were estimated to 13tons, 23cm, and $65m^3$. Based on these results and recommended guideline by Korean Ministry of Environment, dredging frequency was found to be about 2.7years. The shape of forebay has to be carefully designed to deal with a great change in flow rate. According to the results of sediment depth analysis, instead of the present rectangular, wedge-shape forebay is more desirable in handling scouring caused by high flows.

Urban Stormwater Runoff Treatment by the RFS (RFS를 이용한 도시유출수처리)

  • Lee, Jun-Ho;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.159-167
    • /
    • 2000
  • In recent years, combined and separated sewer overflows (CSOs, SSOs) have been recognized as a significant pollution problem. To solve this problem a series of experiments were performed in a small scale Rapid Floc Settler (RFS) device to determine its ability in removing micro particles and dissolved materials from polluted waters. The RFS device is a compact physico-chemical wasterwater treatment system. Polyacrylamide (PAM) is used as a coagulant for treating stormwater in the RFS. The results of Jar test showed that PAM could be an excellent coagulant as compared with aluminum sulfate. and ferric chloride. In several experimental conditions, the influence of different variation parameters was tested to measure the efficiency of the RFS. Tests have been carried out with typical CSOs concentrations (50~1.000mg SS/L). The treatment efficiency with regard to SS and COD, which can be obtained at an overflow rate of $130m^3/m^2/day$, are 90% and 80%, respectively. Comparing other sedimentation technologies with RFS, the overflows rate of RFS is ten times faster. The distribution of particle size and number were analyzed. The RFS is suitable for the treatment of CSOs and also the removal of settleable and dissolved materials in urban stormwater runoff.

  • PDF