• Title/Summary/Keyword: storm surge level

Search Result 44, Processing Time 0.022 seconds

A Study of Storm Surges of the Seas in North eastern asia I. Analysis of Yearly Maximum Surge (東北 아시아 海域의 暴風海溢 硏究 I. 暴風海溢 年別 極値 分析)

  • 이진경;오임상
    • 한국해양학회지
    • /
    • v.29 no.1
    • /
    • pp.28-41
    • /
    • 1994
  • The hourly sea level data are analyzed in order to find the general characteristics of the storm surges at the coasts of Korea, Japan and Russia. the surges are calculated by removing the predicted tides from the observed sea level at 44 tidal stations. In korea, positive and negative surges of the west coast are larger than those of the south and east coasts. The magnitudes of negative surges are larger than those of positive surges at the west of Japan. The surges of the northern Russian coast are relatively larger than those of the southern west coast of japan. The yearly maximum positive surges at the west coast of Korea, are found to be caused by extratropical storm, but the maximum positive surges at the south or the east coast of Korea are due to the summer typhoon. Mostly the yearly maximum negative surges occur at the west coast of Korea (particularly Inchon), and they are caused by extratropical storm.

  • PDF

Storm Surge Caused by the Typhoon “Maemi” in Kwangyang Bay in 2003 (광양만에서의 2003년 태풍 “매미”에 의한 폭풍해일)

  • 김현성;이석우
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.3
    • /
    • pp.119-129
    • /
    • 2004
  • The surges caused by the typhoon “Maemi” which struck the southern coast of Korea are analysed in Kwangyang Bay on September 12, 2003. The deviations of the high water level were 93∼108 cm and the maximum deviations of the water level (maximum surges) were 176∼196 cm in Kwangyang Bay during the typhoon “Maemi”. The major parameters of the maximum deviations of the water level are as follows: Analysis shows that the pressure drop increased the sea level by 59 cm, the flood of the Sumjin River by 4-5 cm and the external surge propagation and wind setup by 113∼132 cm. During the typhoon “Maemi”, the highest high water recorded in Kwangyang Port (PT3) is 460 cm, which is higher by 5 cm than the highest high water (455 cm) with return period of 100 years estimated in planning the Kwangyang steelworks (POSCO) grounds and higher by 15 cm than the observed highest high water (445 cm) recorded during the typhoon “Thelma” on 1987. Thus, the highest high water caused by the typhoon “Maemi” is higher than the extreme highest high water for the last 20 years in Kwangyang Bay.

Effect of Summer Sea Level Rise on Storm Surge Analysis (하계 해수면 상승이 폭풍해일고 분석에 미치는 영향)

  • Kim, A Jeong;Lee, Myeong Hee;Suh, Seung Won
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.298-307
    • /
    • 2021
  • Typhoons occur intensively between July and October, and the sea level is the highest during this time. In particular, the mean sea level in summer in Korea is higher than the annual mean sea level about 14.5cm in the west coast, 9.0 to 14.5cm in the south coast, and about 9.0 cm in the east coast. When the rising the sea level and a large typhoon overlap in summer, it can cause surges and flooding in low-lying coastal areas. Therefore, accurate calculation of the surge height is essential when designing coastal structures and assessing stability in order to reduce coastal hazards on the lowlands. In this study, the typhoon surge heights considering the summer mean sea level rise (SH_m) was calculated, and the validity of the analysis of abnormal phenomena was reviewed by comparing it with the existing surge height considering the annual mean sea level (SH_a). As a result of the re-analyzed study of typhoon surge heights for BOLAVEN (SANBA), which influenced in August and September during the summer sea level rise periods, yielded the differences of surge heights (cm) between SH_a and SH_m 7.8~24.5 (23.6~34.5) for the directly affected zone of south-west (south-east) coasts, while for the indirect southeast (south-west) coasts showed -1.0~0.0 (8.3~12.2), respectively. Whilst the differences between SH_a and SH_m of typhoons CHABA (KONG-REY) occurred in October showed remarkably lessened values as 5.2~ 14.2 (19.8~21.6) for the directly affected south-east coasts and 3.2~6.3 (-3.2~3.7) for the indirectly influenced west coast, respectively. The results show the SH_a does not take into account the increased summer mean sea level, so it is evaluated that it is overestimated compared to the surge height that occurs during an actual typhoon. Therefore, it is judged that it is necessary to re-discuss the feasibility of the surge height standard design based on the existing annual mean sea level, along with the accurate establishment of the concept of surge height.

A Warning and Forecasting System for Storm Surge in Masan Bay (마산만 국지해일 예경보 모의 시스템 구축)

  • Han, Sung-Dae;Lee, Jung-Lyul
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.131-138
    • /
    • 2009
  • In this paper, a dynamic warning system to forecast inland flooding associated with typhoons and storms is described. The system is used operationally during the typhoon season to anticipate the potential impact such as inland flooding on the coastal zone of interest. The system has been developed for the use of the public and emergency management officials. Simple typhoon models for quick prediction of wind fields are implemented in a user-friendly way by using a Graphical User Interface (GUI) of MATLAB. The main program for simulating tides, depth-averaged tidal currents, wind-driven surges and currents was also vectorized for the fast performance by MATLAB. By pushing buttons and clicking the typhoon paths, the user is able to obtain real-time water level fluctuation of specific points and the flooding zone. This system would guide local officials to make systematic use of threat information possible. However, the model results are sensitive to typhoon path, and it is yet difficult to provide accurate information to local emergency managers.

Analysis on Inundation Impacts of Sea Level Rise Using System Dynamics-GIS Model (System Dynamics-GIS 모델을 이용한 해수면 상승 침수 영향 분석)

  • KIM, Ji-Sook;KIM, Ho-Yong;LEE, Sung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.2
    • /
    • pp.92-104
    • /
    • 2015
  • In order to analyze the impacts of climate change, a time and space integrated model was developed in this study using system dynamics and GIS. The model built was used to carry out a simulation on the inundation impact on A-gu of Busan Metropolitan city resulting from the sea level rise scenario of IPCC and storm surge, which is the worst case. Through this, the flooded area and population until 2100 were predicted. Also, the result and significance of each alternative was reviewed improving the model by establishing alternative scenarios of protection, accommodation and retreat as plans of reaction to sea level rise. The combination of system dynamics and GIS has advantages of how the diverse variables change until the target year can be traced and, accordingly, not only the results but also the processes of spatial change can be examined by calculating the value of change process at each time step. The synergy of this model presumed to be a foothold for solving problems which are becoming difficult to predict due to increase in uncertainty and complexity such as the support for decision making for urban resilience to natural disasters.

The Evidence of Coastal Flooding Within the Coastal Depositsin Hasa-ri, Yeonggwang (영광 하사리 해안 퇴적층 내의 연안 범람 증거)

  • Shin, Won Jeong;Yang, Dong Yoon;Kim, Jong Yeon;Choi, Jeong-Heon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.3
    • /
    • pp.83-103
    • /
    • 2017
  • Sand deposit with shell units is exposed in Hasa-ri, Yeonggwang-gun, Jeonnam province. We investigated the characteristics of sand sediment topography in the Yeonggwang coastal area to collect evidence of the paleo-environmental change. We performed analysis on particle characteristics, chemical composition, and the age of deposition of sediments. The deposit comprise moderately well sorted medium and fine sand ($1.00{\sim}2.19{\varphi}$). Various sedimentary structures can be observed. Geochemical characteristics change by depth and the degree of variation with depth is small. The results obtained from OSL dating show that sand layers below shell units are deposited 0.32-0.43 ka. As the elevation of the shell unit far mean high water levels or highest high water level, the extensive shell layers could only have been deposited during storm surge conditions. Aeolian processes are discounted due to the size of clasts and the location at which they occur. Results of age dating of the surrounding deposits indicate shell deposits formed after around 300 years age. There is a distinct difference between sedimentary layers including dark brown-black layer. The sedimentary characters such as particle size and geochemistry show difference with depth. It is presumed that depositional environmental in Hasa-ri has changed several times before. This study is expected to contribute to finding an evidence about occurrence of storm surges.

A Study on the Meteorological Disaster of Fisheries and Ocean Institution in Jeju Island (제주도 수산해양시설의 기상재해에 관한 연구)

  • Ahn, Young-Wha;Kim, Jun-Teck;Ko, Hee-Jong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.18 no.2
    • /
    • pp.137-149
    • /
    • 2006
  • The typhoon, heavy rain, blizzard, storm and heavy snowfall had the main caused of natural disasters occurred in Korea from 1993 to 2002. Among them, typhoon has responsible for biggest disaster, recording about 47.4% of total economic damage. Typhoons concentrated mostly in the months from June to October. The average occurrence number in those months ranged from 3.9 to 5.5 based on 30 years of record(1971-2000). However, the numbers increased from 4.0 to 6.2 during the most recent 10 years(1991-2000). Jeju province, among others in Korea, was most frequently affected by typhoon which occurred 23 times during the period of 1991-2000. Typhoons which occurred from July to early August have passed mostly through the west of Jeju, whereas, those of late August to September have passed through the center and eastern sea area of Jeju. The typhoons 'Ramasun' and 'Rusa' caused severe damage in Jeju area in September 2003 and the surge heights were +39cm and +77cm, respectively. The main cause of the damage was surge height which was highly associated with the tidal phase at the time of typhoon passage. The damage caused by typhoon on the aquaculture, fishing boat and harbor cosatline wall around Jeju Island which was amounted to be 417 billion won(\) during the recent 3 years(2002-2004)

Deterministic Estimation of Typhoon-Induced Surges and Inundation on Korean Coastal Regions (국내 연안 태풍 해일의 결정론적 추정 및 침수 영역 예측)

  • Ku, Hyeyun;Maeng, Jun Ho;Cho, Kwangwoo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • This research mainly focuses on examining the applicability of the deterministic model SLOSH (Sea, Lake and Overland Surges from Hurricanes) on Seas covering South Korea. Also, a simple bathtub approach which estimates coastal inundation area is validated as a first step of estimating effects of sea-level rise on the coastal cities of South Korea according to climate change. Firstly, the typhoon-induced surges are obtained from the model SLOSH by adopting historical typhoons MAEMI (0314) and BOLAVEN (1215). The results are compared to observational, typhoon-induced surge heights at several tidal stations. The coastal inundation area is estimated by comparing the maximum envelop of waves (MEOW) and the elevation of coastal land. It reproduces well the inundation area. It can be seen that this research gained applicability for estimating further potential coastal inundation with climate changes.

the On-Line Prediction of Water Levels using Kalman Filters (칼만 필터를 이용한 실시간 조위 예측)

  • 이재형;황만하
    • Water for future
    • /
    • v.24 no.3
    • /
    • pp.83-94
    • /
    • 1991
  • In this paper a discrete extended Kalman filter for the tidal prediction has been developed. The filter is based on a set of difference equations derived from the one dimensional shallow water equations using the finite difference scheme proposed by Lax-Wendroff. The filter gives estimates of the water level and water velocity, together with the parameters in the model which essentially have a random character, e.g. bottom friction and wind stress. The estimates are propagated and updated by the filter when the physical circumstances change. The Kalman-filter is applied to field data gathered in the coastal area alon the West Sea and it is shown that the filter gives satisfactory results in forecasting the waterlevels during storm surge periods.

  • PDF

Estimation of Inundation Damages of Urban area Around Haeundae Beach Induced by Super Storm Surge Using Airborne LiDAR Data (항공 LiDAR 자료를 이용한 슈퍼태풍 내습시 해운대 해수욕장 인근 도심지역 침수 피해 규모 추정)

  • Han, Jong-Gyu;Kim, Seong-Pil;Chang, Dong-Ho;Chang, Tae-Soo
    • Spatial Information Research
    • /
    • v.17 no.3
    • /
    • pp.341-350
    • /
    • 2009
  • As the power and scale of typhoons are growing due to global warming and socioeconomic damages induced by super-typhoons are increasing, it is important to estimate inundation damages and to prepare proper adaptation plans against an attack of the super-typhoon. In this paper, we estimated the inundation damages of urban area around Haeundae beach induced by super-typhoons which follow the route of Typhoon Maemi with the conditions of Typhoon Vera (Ise Bay in Japan, 1959), Typhoon Durian (Philippine, 2006) and Hurricane Katrina (New Oleans in U.S.A, 2005). The coastal area around the Haeundae beach (Busan and Gyeongnam province) is expectedly damaged by severe storm surges. In this study we calculated the rise of sea level height after harmonizing the different datum levels of land and ocean and estimated the inundation depth, inundation area and the amount of building damages by using airborne LiDAR data and GIS spatial analysis techniques more accurately and quantitatively. As many researchers are predicting that super-typhoon of overwhelming power will occur around the Korean peninsula in the near future, the results of this study are expected to contribute to producing coastal inundation map and evacuation planning.

  • PDF