• Title/Summary/Keyword: storm sewer

검색결과 122건 처리시간 0.02초

Effect for CSOs Storage Construction - Analysis of Storm Water Run-off Characteristics in combined sewer system (합류식 하수관거 월류수 저장 시설에 대한 효과 - 강우시 합류식 하수관거에서의 오염물질 유출특성 분석)

  • Park, Jin-Kyu;Lee, Nam-Hoon;Kim, Hae-Ryong;Lee, Woong;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제25권6호
    • /
    • pp.949-957
    • /
    • 2011
  • This aim of study was to investigate the characteristics of discharge of pollutants as well as the correlation between flow rate and water quality constituents in a combined sewer system according to the characteristics of rainfall. For the loading rates for each pollutant, the median concentrations of all pollutants except T-N was increased when a CSO took place. The loading rates of BOD, COD, SS, T-N, T-P, Cu and Zn at the CSOs were 328-1255, 25-129, 83-2009, 4-12, 14-51, 5-11 and 5-13 times higher than the DWF (Dry Whether Flow), respectively. Especially, SS loading rate was found to be highest in all pollutants. On the other hand, the range of the first flush coefficient, b for water quality constituents such as BOD, COD, SS, T-N, T-P, Cu and Zn were 0.537-0.878, 0.589-0.888, 0.516-1.062, 0.852-1.031, 0.649-0.954, 0.975-1.015 and 0.900-1.114, respectively. In term of correlation between flow rate and pollutant concentrations, SS concentration was highly correlated to flow rate. However, there was an inverse correlation between EC (Electrical Conductivity) and flow rate because of the high dilution of flow rate. In case of correlation between pollutants, there was a high correlation between SS and T-P.

The NPS Analysis and CSO Management Based on SWMM for Oncheon Basin (SWMM 모형을 이용한 비점오염 분석 및 CSO 관리방안 연구 - 부산시 온천천 유역 대상 -)

  • Shin, Hyun Suk;Son, Jeong Hwa;Jang, Jong Kyung;Shon, Tae Seok;Kang, Dookee;Cho, Dukjoon
    • Journal of Korean Society on Water Environment
    • /
    • 제25권2호
    • /
    • pp.268-280
    • /
    • 2009
  • Oncheon basin which are located in Busan is divided into 43 basin on the basis of main pipe, constructed with Storm Water Management Model (SWMM). Occurrence situation for Outflow and pollutant loads by long-term continuous rainfall is examined for treatment district and river analysis point of Oncheon basin and a reduction vs effectiveness table for effective CSOs managements is made for each of treatment districts according to each of managements. In case that treatment equipment is located at the discharge point of CSO, treatment efficiency is analysed. It is supposed that treatment equipment have an efficiency on the basis of a concentration and runoff discharge over a critical flow is discharged with it untreated and treating runoff discharge with treatment equipment at each of runoff discharge points and treating it gathered at sewage treatment plant (STP) through trunk sewer is compared for a relative treatment efficiency.

Design of a Data Model for the Rainfall-Runoff Simulation Based on Spatial Database (공간DB 기반의 강우-유출 모의를 위한 데이터 모델 설계)

  • Kim, Ki-Uk;Kim, Chang-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • 제13권4호
    • /
    • pp.1-11
    • /
    • 2010
  • This study proposed the method for the SWMM data generation connected with the spatial database and designed the data model in order to display flooding information such as the runoff sewer system, flooding areas and depth. A variety of data, including UIS, documents related to the disasters, and rainfall data are used to generate the attributes for flooding analysis areas. The spatial data is constructed by the ArcSDE and Oracle DB. The prototype system is also developed to display the runoff areas based on the GIS using the ArcGIS ArcObjects and spatial DB. The results will be applied to the flooding analysis based on the SWMM.

Urban Nonpoint Source Pollution Assessment Using A Geographical Information System (GIS를 이용한 도심지 Nonpoint Source 오염 물질의 평가연구)

  • ;Stephen J. Ventura;Paul M. Harris;Peter G. Thum;Jeffrey Prey
    • Spatial Information Research
    • /
    • 제1권1호
    • /
    • pp.39-53
    • /
    • 1993
  • A geographical information systems(GIS) was a useful aid in the assessment of urban nonpoint source pollution and the development of a pollution control strategy. The GIS was used for data integration and display, and to provide data for a nonpoint source model. An empirical nonpoint source loading model driven by land use was used to estimate pollutant loadings of priority pollutant. Pollutant loadings were estimated at fine spatial resolution and aggregated to storm sewer drainage basins(sewershedsl. Eleven sewersheds were generated from digital versions of sewer maps. The pollutant loadings of individual land use polygons, derived as the unit of analysis from street blocks, were aggregated to get total pollutant loading within each sewershed. Based on the model output, a critical sewershed was located. Pollutant loadings at major sewer junctions within the critical sewershed were estimated to develop a mi t igat ion strategy. Two approaches based on the installat ion of wet ponds were investigated -- a regional approach using one large wet pond at the major sewer outfall and a multi-site approach using a number of smaller sites for each major sewer junction. Cost analysis showed that the regional approach would be more cost effective, though it would provide less pollution control.

  • PDF

SS Removal-rate Efficiency of Storm-water Detention Storage Tank Depending upon Length, Inside Training Wall and Gravel Filling (우수저류조의 형상과 도류벽 및 자갈채움에 따른 SS 제거효율)

  • Lee, Jong Tae;Seo, Hong Joon;Seo, Kyung A
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제23권5호
    • /
    • pp.655-667
    • /
    • 2009
  • An experimental study is performed on reducing the pollutants supplied by storm water through enhancing efficiency of SS from the detention storage tank where CSOs are kept temporarily before discharge to the receiving water system. SS removal efficiency is investigated in accordance with various conditions of the detention pond-such as its length, the existence of training wall, and the use of gravel filling. The removal efficiency is strongly affected by the detention pond's length until the critical falling distance of the suspended solids is reached. For cases where the tank has a length longer than this critical condition, the removal rate shows less sensitivity. To enhance the SS removal efficiency of tanks of shorter than the critical length, we studied alternative types of tank in which inside training walls are installed. The results showed improvement of 14 to 37% in removal efficiency in 2hours detention(2 training walls). The important factor in achieving a high SS removal rate is ensuring the critical length of the detention pond, but for the cases where the basin length cannot be guaranteed, baffles or a gravel filling scheme may be introduced to attain considerable efficiency. The results of studying and comparing different storage tank conditions show that, in terms of elimination efficiency, a storage tank with gravel filling and training walls > a storage tank with gravel filling > a storage tank with training walls > an empty tank. The experimental results should contribute to development of related further research, by empirically verifying the already assumed importance of critical falling distance, training walls, and gravel filling schemes.

Determination of Probable Rainfall Intensity Formulas for Designing Storm Sewer Systems at Incheon District (우수거 설계를 위한 인천지방에서의 확률강우강도식의 산정)

  • Ahn, Tae-Jin;Kim, Kyung-Sub
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제12권3호
    • /
    • pp.99-106
    • /
    • 1998
  • This paper presents a procedure for determining the design rainfall depth and the design rainfall intensity at Incheon city area in Korea. In this study the eight probability distributions are considered to estimate the probable rainfall depths for 11 different durations. The Kolmogorov - Smirnov test and the Chi-square test are adopted to test each distribution. The probable rainfall intensity formulas are then determined by i) the least squares (LS) method, ii) the least median squares (LMS) method, iii) the reweighted least squares method based on the LMS (RLS), and iv) the constrained regression (CR) model. The Talbot, the Sherman, the Japanese, and the Unified type are considered to determine the best type for the Incheon station. The root mean squared (RMS) errors are computed to test the formulas derived by four methods. It is found that the Unified type is the most reliable and that all methods presented herein are acceptable for determining the coefficients of rainfall intensity formulas from an engineering point of view.

  • PDF

Development of a Combined Model for Flood Inundation Simulation (홍수범람모의를 위한 내외수 연계모형 개발)

  • Yu, Jae-Hong;Kim, Hyung-Jun;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • 제5권4호
    • /
    • pp.1-8
    • /
    • 2005
  • In this study, a numerical model combined by a river model and an inland model developed to simulated a flood event. The river model describing an inundation in a river solves the two-dimensional Saint Venant equations with a finite difference method. The inland model based on the ILLUDAS describes the conveyance capacity of a storm sewer system. The combined model is applied to a real situation. The model simulates reasonably the real flood event occurred in a river and inland simultaneously.

Criteria for calculation of CSO volume and frequency using rainfall-runoff model (우수유출 모형을 이용한 합류식하수관로시스템의 월류량, 월류빈도 산정 기준 결정 연구)

  • Lee, Gunyoung;Na, Yongun;Ryu, Jaena;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제27권3호
    • /
    • pp.313-324
    • /
    • 2013
  • It is widely known that untreated Combined Sewer Overflows (CSOs) that directly discharged from receiving water have a negative impact. Recent concerns on the CSO problem have produced several large scale constructions of treatment facilities, but the facilities are normally designed under empirical design criteria. In this study, several criteria for defining CSOs (e.g. determination of effective rainfall, sampling time, minimum duration of data used for rainfall-runoff simulation and so on) were investigated. Then this study suggested a standard methodology for the CSO calculation and support formalized standard on the design criteria for CSO facilities. Criteria decided for an effective rainfall was over 0.5 mm of total rainfall depth and at least 4 hours should be exist between two different events. An Antecedent dry weather period prior to storm event to satisfy the effective rainfall criteria was over 3 days. Sampling time for the rainfall-runoff model simulation was suggested as 1 hour. A duration of long-term simulation CSO overflow and frequency calculation should be at least recent 10 year data. A Management plan for the CSOs should be established under a phase-in of the plan. That should reflect site-specific conditions of different catchments, and formalized criteria for defining CSOs should be used to examine the management plans.

Development of Reliability Estimation Method for Storm Sewer Networks (우수관망 신뢰도 산정방법의 개발)

  • Lee, Jung-Ho;Song, Yang-Ho;Ryu, Seung-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.470-470
    • /
    • 2012
  • 우수관거 시스템에서의 신뢰도 분석에 대한 기존 연구들은 시스템의 설계상에서의 각종 매개변수들에 대한 불확실성 분석에 기초하여 왔다. 그러나 본 연구에서는 동일한 설계빈도하에 설계된 우수관망이라 하더라도 관망의 노선 선정에 따라서 유출구에서의 첨두유출량 및 초과강우사상에 따른 침수 발생량이 달라질 수 있다는 점에 주목하였다. 그러므로 신뢰도 높은 우수관망을 설계하기 위해서는 이러한 침수 발생 확률을 줄일 수 있도록 하여야 하며, 이를 위해서는 관망 구성에 따라 달라지는 신뢰도를 하나의 정량화된 수치로 나타야 한다. 본 연구에서는 설계빈도를 초과하는 강우사상들에 대하여 해당 우수관망의 월류 발생 정도를 정량적으로 평가함으로써 상대적인 신뢰도를 하나의 지표로서 나타내고자 하였다. 이때 고려되는 것은 초과강우사상 발생 시 해당 관망에서의 월류 발생량 및 월류 발생 지점 개수이다. 또한 이때 고려 대상이 되는 월류량 및 월류 발생지점 수는 서로 다른 척도를 갖는 항목이므로 이에 대한 종합적인 고려를 위하여 본 연구에서는 다기준의사결정기법 중 하나인 DMM(Distance Measure Method)을 이용하였다. 본 연구에서 개발한 우수관망 신뢰도의 산정 절차는 다음과 같다. step 1) 초과빈도별 월류 발생량 및 월류 발생 지점 수 산정 step 2) 빈도별 월류발생량 비율( ) 및 월류발생지점 비율($N_i$) 산정 $$V_i$$ $$V_o/V/R$$ $$N_i=N_o/N_T/R$$ 여기서, $V_i$는 적용된 강우량당 유역의 전체 유출량 대비 월류발생량을 나타내며, $N_i$는 적용된 강우량당 해당 관망의 전체 지점 수 대비 월류 발생지점 수를 나타낸다. step 3) 중심점(central point)에 대하여 DMM을 이용한 치수안전성 산정 $$Reliability\;of\;Sewer\;Networks=1-\;{(1-N_i)^2+(1-V_i)^2\atop2}$$.

  • PDF

Analysis of Hydrodynamic Separators for Combined Sewer Overflows and Stromwater Runoff Control (합류식 하수관거 월류수 및 우수관거 유출수의 수리동력학적 오염부하저감장치의 분석)

  • Lee, Soo Young;Oh, Ji Hyun;Ryu, Seong Ho;Kwon, Bong Ki;Chung, Tai Hak
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제19권2호
    • /
    • pp.117-124
    • /
    • 2005
  • Appropriate removal of pollutants from combined sewer overflows(CSOs) and stormwater runoff is of primary concern to watershed managers trying to meet water quality standards even under a wet weather condition. Harmful substances associated with particles besides TSS and BOD are subjected to removal prior to discharge into the natural waters. Effectiveness of five major hydrodynamic separation technologies, Vortechs, Downstream Defender including Storm King for CSOs control, CDS, Stormceptor, and IHS, were evaluated in this study. There is not sufficient information for accurate evaluation of the removal efficiency for the pollutants from the stormwater runoff and CSOs. Based upon limited engineering data, however, all technologies were found to be effective in separation of heavy particles and floating solids. Technologies utilizing screens seem to have advantage in the treatment capacity than the other technologies relied fully on hydrodynamic behavior. The IHS system seems to have a strong potential in application for control of CSOs because of unique hydrodynamic behavior as well as a flexibility in opening size of the screens. Size of the particulate matter in the CSOs and stormwater runoff is found to be the most important parameter in selection of the type of the hydrodynamic separators. There exists an upper limit in the solids removal efficiency of a hydrodynamic separator, which is strongly dependent upon the particle size distribution of the CSOs and stormwater runoff.