• Title/Summary/Keyword: storm seas

Search Result 17, Processing Time 0.022 seconds

Correlation between Storm Waves and Far-Infra-Gravity Waves Observed in kkye Harbor (옥계항에서 관측된 폭풍파와 저중력파의 상호관계)

  • 정원무;채장원;박우선;이광수;서경덕
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.3
    • /
    • pp.209-229
    • /
    • 2001
  • Simultaneous field measurements of short-period and long-period waves were made at five stations inside or outside Okkye Harbor, which is located in the east coast of Korea. Based on the measured data, spacial and temporal variations of the long-period wave energy were examined. Three smoothing methods were examined for the spectral estimates: fixed interval averaging method, incremental interval averaging method, and moving averaging method. It was shown that a proper smoothing method should be chosen depending on the period of first resonant mode and the length of data being used. By comparing the results obtained using the long-term data with those obtained using two-day data, we showed that it is necessary to analyze the data of calm seas and storm seas separately. The Helmholtz resonant period in Okkye Harbor was found to be about 9.6 minutes with its relative amplification ratio of 9 to 10, and local amplifications were apparent at the periods of 1.2 to 1.3 minutes and 0.7 minute. During calm seas, both at the harbor entrance and inside the harbor the energy of the waves of 9 minutes or longer period was larger than the infra-gravity wave energy by more than 100 times. However, during storm seas the energy level was very high all over the period band, and local amplification was larger than that during calm seas by more than 100 times, especially inside the harbor, Finally it was shown that the energies of the Helmholtz resonant mode and the infra-gravity waves of 1 to 2 minutes are proportional to the storm wave height.

  • PDF

Current Status of Intensive Observing Period and Development Direction (집중관측사업의 현황과 발전 방향)

  • Kim, Hyun Hee;Park, Seon Ki
    • Atmosphere
    • /
    • v.18 no.2
    • /
    • pp.147-158
    • /
    • 2008
  • Domestic IOP (intensive observing period) has mostly been represented by the KEOP (Korea Enhanced Observing Period), which started the 5-yr second phase in 2006 after the first phase (2001-2005). During the first phase, the KEOP had focused on special observations (e.g., frontal systems, typhoons, etc.) around the Haenam supersite, while extended observations have been attempted from the second phase, e.g., mountain and downstream meteorology in 2006 and heavy rainfall in the mid-central region and marine meteorology in 2007. So far the KEOP has collected some useful data for severe weather systems in Korea, which are very important in understanding the development mechanisms of disastrous weather systems moving into or developing in Korea. In the future, intensive observations should be made for all characteristic weather systems in Korea including the easterly in the central-eastern coastal areas, the orographically-developed systems around mountains, the heavy snowfall in the western coastal areas, the upstream/downstream effect around major mountain ranges, and the heavy rainfall in the mid-central region. Enhancing observations over the seas around the Korean Peninsula is utmost important to improve forecast accuracy on the weather systems moving into Korea through the seas. Observations of sand dust storm in the domestic and the source regions are also essential. Such various IOPs should serve as important components of international field campaign such as THORPEX (THe Observing system Research and Predictability EXperiment) through active international collaborations.

Numerical Simulations of the Storm Surges in the Seas Around Korea (한국(韓國) 근해(近海)의 폭풍(暴風) 해일(海溢) 수식(數植) 시뮬레이션)

  • OH, IM SANG;KIM, SEONG IL
    • 한국해양학회지
    • /
    • v.25 no.4
    • /
    • pp.161-181
    • /
    • 1990
  • A numerical model is established in order to simulate the storm surges which were observed in the seas around Korea during typhoon and winter storm periods. The typhoons are Brenda (1985), Vera (1986) and Thelma (1987). the winter storm period is January 1-6, 1986. The simulated surges for the typhoon periods show good agreements with the recorded ones for the periods at the Korean coasts, but those for the winter storm show fair agreements in general tendencies, not in details. The model simulation in open sea shows a positive sea level near the typhoon center and a native sea level behind the typhoon. the positive surge seems to be due to the low pressure near a typhoon center and the negative on due to the wind stresses of the typhoon. The negative sea level is usually in the form of an elongated gyre. In the gyre, there is a cyclonic circulation of sea water, in which the pressure gradient force induced by the circular depression of the sea surface is balanced by the Coriolis force in readjusting stage.

  • PDF

A Study of Storm Surges Characteristics on the Korean Coast Using Tide/Storm Surges Prediction Model and Tidal Elevation Data of Tidal Stations (조석/폭풍해일 예측 모델과 검조소 조위자료를 활용한 한반도 연안 폭풍해일 특성 연구)

  • You, Sung-Hyup;Lee, Woo-Jeong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.6
    • /
    • pp.361-373
    • /
    • 2010
  • Analysis has been made on the tide/storm surges characteristics near the Korean marginal seas in the 2008 and 2009 years using operational ocean prediction model of the Korea Meteorological Administration(KMA). In order to evaluate its performance, its results were compared with the observed data by tidal stations around Korean Peninsula. The model used in this study predicts very well the characteristics of tide/storm surges near the Korean Peninsula. Simulated storm surges show the evident effects of Typhoons in summer season. The averaged root mean square error(RMSE) of 48 hr forecasting between the modeled and observed storm surges are 0.272 and 0.420 m in 2008 and 2009, respectively. Due to strong sea winds, the highest storm surges heights was found in summer season of 2008, however, in 2009, the high storm surges heights was also found in other seasons. When Typhoon Kalmaegi(2008) and Morokot(2009) approached to Korean Peninsular, the accuracy of model predictions is almost same as annual mean value but the precision accuracy for Typhoon Morakot is lower than of Typhoon Kalmaegi similar to annual results.

A Study of Storm Surges of the Seas in North eastern asia I. Analysis of Yearly Maximum Surge (東北 아시아 海域의 暴風海溢 硏究 I. 暴風海溢 年別 極値 分析)

  • 이진경;오임상
    • 한국해양학회지
    • /
    • v.29 no.1
    • /
    • pp.28-41
    • /
    • 1994
  • The hourly sea level data are analyzed in order to find the general characteristics of the storm surges at the coasts of Korea, Japan and Russia. the surges are calculated by removing the predicted tides from the observed sea level at 44 tidal stations. In korea, positive and negative surges of the west coast are larger than those of the south and east coasts. The magnitudes of negative surges are larger than those of positive surges at the west of Japan. The surges of the northern Russian coast are relatively larger than those of the southern west coast of japan. The yearly maximum positive surges at the west coast of Korea, are found to be caused by extratropical storm, but the maximum positive surges at the south or the east coast of Korea are due to the summer typhoon. Mostly the yearly maximum negative surges occur at the west coast of Korea (particularly Inchon), and they are caused by extratropical storm.

  • PDF

Comparison of Data Assimilation Methods in a Regional Ocean Circulation Model for the Yellow and East China Seas (자료동화 기법에 따른 황·동중국해 지역 해양순환모델 결과 비교)

  • Lee, Joon-Ho;Moon, Jae-Hong;Choi, Youngjin
    • Ocean and Polar Research
    • /
    • v.42 no.3
    • /
    • pp.179-194
    • /
    • 2020
  • The present study aims to evaluate the effects of satellite-based SST (OSTIA) assimilation on a regional ocean circulation model for the Yellow and East China Seas (YECS), using three different assimilation methods: the Ensemble Optimal Interpolation (EnOI), Ensemble Kalman Filter (EnKF), and 4-Dimensional Variational (4DVAR) techniques, which are widely used in the ocean modeling communities. The model experiments show that an improved initial condition by assimilating the SST affects the seasonal water temperature and water mass distributions of the YECS. In particular, the SST data assimilation influences the temperature structures horizontally and vertically in winter, thereby improving the behavior of the YS warm current water. This is due to the fact that during wintertime the water column is well mixed, which is directly updated by the SST assimilation. The model comparisons indicate that the SST assimilation can improve the model performance in resolving the subsurface structures in wintertime, but has a relatively small impact in summertime due to the strong stratification. The differences among the different assimilation experiments are obvious when the SST was sharply changed due to a typhoon passage. Overall, the EnKF and 4DVAR show better agreement with the observations than the EnOI. The relatively low performance of EnOI under storm conditions may be related with a limitation of EnOI method whereby an analysis is obtained from a number of climatological fields, and thus the typhoon-induced SST changes in short-time scales may not be adequately reflected in the data assimilation.

Characteristics of Atmospheric Circulation in Sokcho Coast (속초연안에서 대기순환의 특성)

  • Choi Hyo
    • Journal of Environmental Science International
    • /
    • v.14 no.1
    • /
    • pp.41-51
    • /
    • 2005
  • Using three-dimensional non-hydrostatical numerical model with one way double nesting technique, atmo­spheric circulation in the mountainous coastal region in summer was investigated from August 13 through 15, 1995. During the day, synoptic westerly wind blows over Mt. Mishrung in the west of a coastal city, Sokcho toward the East Sea, while simultaneously, easterly upslope wind combined with both valley wind from plain (coast) toward mountain and sea-breeze from sea toward inland coast blows toward the top of the mountain. Two different directional wind systems confront each other in the mid of eastern slope of the mountain and the upslope wind goes up to the height over 2 km, becoming an easterly return flow in the upper level over the sea and making sea-breeze front with two kinds of sea-breeze circulations of a small one in the coast and a large one in the open sea. Convective boundary layer is developed with a thickness of about 1km over the ground in the upwind side of the mountain in the west and a thickness of thermal internal boundary layer from the coast along the eastern slope of the mountain is only confined to less than 200 m. On the other hand, after sunset, no prohibition of upslope wind generated during the day and downward wind combined with mountain wind from mountain towardplain and land-breeze from land toward under nocturnal radiative cooling of the ground surfaces should intensify westerly downslope wind, resulting in the formation of wind storm. As the wind storm moving down along the eastern slop causes the development of internal gravity waves with hydraulic jump motion in the coast, bounding up toward the upper level of the coastal sea, atmospheric circulation with both onshore and offshore winds like sea-breeze circulation forms in the coastal sea within 70 km until midnight and after that, westerly wind prevails in the coast and open seas.

Regional Realtime Ocean Tide and Storm-surge Simulation for the South China Sea (남중국해 지역 실시간 해양 조석 및 폭풍해일 시뮬레이션)

  • Kim, Kyeong Ok;Choi, Byung Ho;Lee, Han Soo;Yuk, Jin-Hee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.2
    • /
    • pp.69-83
    • /
    • 2018
  • The South China Sea (SCS) is a typical marginal sea characterized with the deep basin, shelf break, shallow shelf, many straits, and complex bathymetry. This study investigated the tidal characteristics and propagation, and reproduced typhoon-induced storm surge in this region using the regional real-time tide-surge model, which was based on the unstructured grid, resolving in detail the region of interest and forced by tide at the open boundary and by wind and air pressure at the surface. Typhoon Haiyan, which occurred in 2013 and caused great damage in the Philippines, was chosen as a case study to simulate typhoon's impact. Amplitudes and phases of four major constituents were reproduced reasonably in general, and the tidal distributions of four constituents were similar to the previous studies. The modelled tide seemed to be within the acceptable levels, considering it was difficult to reproduce the tide in this region based on the previous studies. The free oscillation experiment results described well the feature of tide that the diurnal tide is prevailing in the SCS. The tidal residual current and total energy dissipation were discussed to understand the tidal and sedimentary environments. The storm-surge caused by typhoon Haiyan was reasonably simulated using this modeling system. This study established the regional real-time barotropic tide/water level prediction system for the South China Sea including the seas around the Philippines through the validation of the model and the understanding of tidal characteristics.

The Operational Procedure on Estimating Typhoon Center Intensity using Meteorological Satellite Images in KMA

  • Park, Jeong-Hyun;Park, Jong-Seo;Kim, Baek-Min;Suh, Ae-Sook
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.278-281
    • /
    • 2006
  • Korea Meteorological Administration(KMA) has issued the tropical storm(typhoon) warning or advisories when it was developed to tropical storm from tropical depression and a typhoon is expected to influence the Korean peninsula and adjacent seas. Typhoon information includes current typhoon position and intensity. KMA has used the Dvorak Technique to analyze the center of typhoon and it's intensity by using available geostationary satellites' images such as GMS, GOES-9 and MTSAT-1R since 2001. The Dvorak technique is so subjective that the analysis results could be variable according to analysts. To reduce the subjective errors, QuikSCAT seawind data have been used with various analysis data including sea surface temperature from geostationary meteorological satellites, polar orbit satellites, and other observation data. On the other hand, there is an advantage of using the Subjective Dvorak Technique(SDT). SDT can get information about intensity and center of typhoon by using only infrared images of geostationary meteorology satellites. However, there has been a limitation to use the SDT on operational purpose because of lack of observation and information from polar orbit satellites such as SSM/I. Therefore, KMA has established Advanced Objective Dvorak Technique(AODT) system developed by UW/CIMSS(University of Wisconsin-Madison/Cooperative Institude for Meteorological Satellite Studies) to improve current typhoon analysis technique, and the performance has been tested since 2005. We have developed statistical relationships to correct AODT CI numbers according to the SDT CI numbers that have been presumed as truths of typhoons occurred in northwestern pacific ocean by using linear, nonlinear regressions, and neural network principal component analysis. In conclusion, the neural network nonlinear principal component analysis has fitted best to the SDT, and shown Root Mean Square Error(RMSE) 0.42 and coefficient of determination($R^2$) 0.91 by using MTSAT-1R satellite images of 2005. KMA has operated typhoon intensity analysis using SDT and AODT since 2006 and keep trying to correct CI numbers.

  • PDF

Development of Estimation Functions for Strong Winds Damage Based on Regional Characteristics : Focused on Jeolla area (지역특성 기반의 강풍피해 예측함수 개발 : 전라지역을 중심으로)

  • Song, Chang Young;Yang, Byong Soo
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.4
    • /
    • pp.13-24
    • /
    • 2020
  • Abnormal weather conditions have lately been occurring frequently due to the rapid economic development and global warming. Natural disasters classified as storm and flood damages such as heavy rain, typhoon, strong wind, high seas and heavy snow arouse large-scale human and material damages. To minimize damages, it is important to estimate the scale of damage before disasters occur. This study is intended to develop a strong wind damage estimation function to prepare for strong wind damage among various storm and flood disasters. The developed function reflects weather factors and regional characteristics based on the strong wind damage history found in the Natural Disaster Yearbook. When the function is applied to a system that collects real-time weather information, it can estimate the scale of damage in a short time. In addition, this function can be used as the grounds for disaster control policies of the national and local governments to minimize damages from strong wind.