• Title/Summary/Keyword: storm runoff

Search Result 414, Processing Time 0.029 seconds

Development of Stream Width and Bed-slope Estimation Equations for Preparing Data for Distributed Storm Runoff Model (분포형 강우-유출모형의 하도자료 구축을 위한 하폭 및 하상경사 산정공식 개발)

  • Jung, In-Kyun;Park, Jong-Yoon;Joh, Hyung-Kyung;Lee, Ji-Wan;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.4
    • /
    • pp.1-10
    • /
    • 2010
  • In this study, two estimation equations for preparing stream data for distributed storm runoff model were developed by analyzing the nonlinear relation between upstream flow-length and stream width, and between upstream flow-length and stream bed-slope. The equations for stream cell were tested in Chungjudam watershed (6,661 $km^2$) using KIMSTORM. Six storm events occurring between 2003 and 2008 were selected for the model calibration and verification before the test of equations. The average values of the Nash-Sutcliffe model efficiency (ME), the volume conservation index (VCI), the relative error of peak runoff rate (EQp), and the difference of time to peak runoff (DTp) were 0.929, 1.035, 0.037, and -0.406 hr for the calibrated four storm events and 0.956, 0.939, 0.055, and 0.729 hr for the two verified storm events respectively. The estimation equations were tested to the storm events, and compared the flood hydrograph. The test result showed that the estimation equation of stream width reduced the peak runoff and delaying the time to peak runoff, and the estimation equation of stream bed-slope showed the opposite results.

Assessing Unit Hydrograph Parameters and Peak Runoff Responses from Storm Rainfall Events: A Case Study in Hancheon Basin of Jeju Island

  • Kar, Kanak Kanti;Yang, Sung-Kee;Lee, Jun-Ho
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.437-447
    • /
    • 2015
  • Estimation of runoff peak is needed to assess water availability, in order to support the multifaceted water uses and functions, hence to underscore the modalities for efficient water utilization. The magnitude of storm rainfall acts as a primary input for basin level runoff computation. The rainfall-runoff linkage plays a pivotal role in water resource system management and feasibility level planning for resource distribution. Considering this importance, a case study has been carried out in the Hancheon basin of Jeju Island where distinctive hydrological characteristics are investigated for continuous storm rainfall and high permeable geological features. The study aims to estimate unit hydrograph parameters, peak runoff and peak time of storm rainfalls based on Clark unit hydrograph method. For analyzing observed runoff, five storm rainfall events were selected randomly from recent years' rainfall and HEC-hydrologic modeling system (HMS) model was used for rainfall-runoff data processing. The simulation results showed that the peak runoff varies from 164 to 548 m3/sec and peak time (onset) varies from 8 to 27 hours. A comprehensive relationship between Clark unit hydrograph parameters (time of concentration and storage coefficient) has also been derived in this study. The optimized values of the two parameters were verified by the analysis of variance (ANOVA) and runoff comparison performance were analyzed by root mean square error (RMSE) and Nash-Sutcliffe efficiency (NSE) estimation. After statistical analysis of the Clark parameters significance level was found in 5% and runoff performances were found as 3.97 RMSE and 0.99 NSE, respectively. The calibration and validation results indicated strong coherence of unit hydrograph model responses to the actual situation of historical storm runoff events.

An Application of Z-transform in Single Storm Analysis (단일 호우 해석을 위한 Z-transform 기법의 적용)

  • Park, Haen-Nim;Cho, Won-Cheol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.583-587
    • /
    • 2005
  • At present, various methods are available to analyze storm runoff data. Among these, application of Z-transform is comparatively simple and new, and the technique can be used to identify rainfall and unit hydrograph from analysis of a single storm runoff. The technique has been developed under the premise that the rainfall-runoff process behaves as a linear system for which the Z-transform of the direct runoff equals the product of the Z-transforms of the transfer function and the rainfall. In the hydrologic literatures, application aspects of this method to the rainfall-runoff process are lacking and some of the results are questionable. Thus, the present study provides the estimation of Z-transform technique by analyzing the application process and the results using hourly runoff data observed at the research basin of International Hydrological Program (IHP), the Pyeongchanggang River basin. This study also provides the backgrounds for the problems that can be included in the application processes of the Z-transform technique.

  • PDF

Runoff Analysis and Application of Runoff Model of Urban Storm Drainage Network (도시하수도망에 대한 유출모형의 남용과 유출해석)

  • 박성천;이관수
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.4
    • /
    • pp.33-42
    • /
    • 1996
  • This research is to show the application of runoff model and runoff analysis of urban storm drainage network. the runoff models that were used for this research were RRL, ILLUDAS, and SWMM applicative object basin were Geucknak-chun and Sangmu drainage basin located in Seo-Gu, Kwangju. The runoff analysis employed the design storm that distributed the rainfall intensity according to the return period after the huff's method. The result from the comparative analysis of the three runoff models was as follows The difference of peak runoff by return period was 20-30% at Sangmu drainage area of $3.17 Km^2$, while less than 10% at Geucknak-chun drainage area of $12.7 Km^2$. The peak runoff were similar to all models. At the runoff hydrograph the times between rising and descending points were in the sequence of RRL, ILLUDAS and SWMM, but the peak times were similar to all models. The conveyance coefficient to examine the conveyance of the existing drainage network was 0.94-1.37, which means insecure, in Geucknak-chun drainage basin and 0.69-1.16, which means secure, in sangmu drainage basin.

  • PDF

Runoff simulation for operation of small urban storm water pumping station under heavy storm rainfall conditions (집중호우 시 도시 소유역 배수펌프장 운영을 위한 강우유출모의)

  • Gil, Kyung-Ik;Han, Jong-Ok;Kim, Sung-Geun;Lee, Chang-No;Kim, Goo-Hyeon
    • Journal of Wetlands Research
    • /
    • v.8 no.2
    • /
    • pp.75-81
    • /
    • 2006
  • In this study, runoff simulation was carried out in order to derive operational improvement of small urban storm water pumping station under heavy storm rainfall conditions. The flood inflow hydrograph of Guri city heavy storm in July, 2001 was successfully simulated by HEC-HMS, a GIS-based runoff simulation model. For the runoff simulation, ArcView, as an effective GIS tool, was used to provide input data of the model such as land use data, soil distribution data and SCS runoff curve number.

  • PDF

Application of LID to Reduce Storm Runoff according to the RCP Climate Change Scenarios (RCP 기후변화 시나리오에 따른 우수 유출량 저감을 위한 저영향개발 시설의 적용 방안)

  • Kim, Min ji;Kim, Ji Eun;Park, Kyung Woon;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.333-342
    • /
    • 2022
  • Due to climate change, increased heavy rainfalls result in flood damage every year. To investigate the storm-runoff reduction effects of Low Impact Development (LID), this study performed runoff analyses using the U.S. Environmental Protection Agency (EPA) Storm Water Management Model (SWMM) for past and future representative storm events of the Yongdu Rainwater Pumping Station basin. As a result, the infiltration loss for representative future rainfalls increased by 3.17 %, and the surface runoff and peak runoff rate increased significantly by 32.50 %, and 128.77 %, respectively. To reduce the increased surface runoff and peak runoff rates, this study investigated the applicability of LID approaches, including a permeable pavement, green roof, and rain garden, by adjusting the LID parameters and the ratio of installation area. We identified the ranges of LID parameters that decreased peak runoff rate and surface runoff, and increased infiltration. In addition, when the application ratio of permeable pavement, green roof, and rain garden was 2:1:3, best performance was attained, leading to a reduction of peak runoff of 26.85 %, infiltration loss 12.01 %, surface runoff 15.11 %, and storage 509.47 %. Based on analyzing the effect of storm runoff reductions for various return periods, it was found that as the return period increased, the proportion of peak runoff and surface runoff increased and the proportion of infiltration loss and storage decreased.

The Management of Nonpoint Source and Storm Water Reduction with LID Techniques in Inchon City, South Korea

  • Lim, Dohun;Lee, Yoonjin
    • Journal of Environmental Science International
    • /
    • v.24 no.10
    • /
    • pp.1239-1251
    • /
    • 2015
  • Impervious areas have been expanded by urbanization and the natural structure of water circulation has been destroyed. The limits of centralized management for controlling storm water runoff in urban areas have been suggested. Low impact development (LID) technologies have been promoted as a crucial alternative, establishing a connection with city development plans to build green infrastructures in environmentally friendly cities. Thus, the improvement of water circulation and the control of nonpoint source were simulated through XP-SWMM (storm water and wastewater management model for experts) in this study. The application of multiple LID combination practices with permeable pavements, bioretention cells, and gutter filters were observed as reducing the highest runoff volume by up to 70%. The results from four different LID installation scenarios indicated that permeable paving is the most effective method for reducing storm water runoff. The rate of storm water runoff volume reduced as the rainfall duration extended. Based on the simulation results, each LID facility was designed and constructed in the target area. The LID practices in an urban area enable future studies of the analysis of the criteria, suitable capacity, and cost-efficiency, and proper management methods of various LID techniques.

Application of QuickBird Satellite Image to Storm Runoff Modeling

  • Kim, Sang-Ho;Lee, Mi-Seon;Park, Geun-Ae;Kim, Seong-Joon
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.1
    • /
    • pp.15-20
    • /
    • 2007
  • This study is to apply QuickBird satellite image for the simulation of storm runoff in a small rural watershed. For a $1.05km^2$ watershed located in Goesan-Gun of Chungbuk Province, the land use from the QuickBird image was produced by on-screening digitising after ortho-rectifying using 2 m DEM. For 3 cases of land use, soil and elevation scale (1:5,000, 1:25,000 and 1:50,000), SCS-CN and the watershed physical parameters were prepared for the storm runoff model, HEC-HMS (Hydrologic Modelling System). The model was evaluated for each case and compared the simulated results with couple of selected storm events.

Runoff Analysis due to Moving Storms based on the Basin Shapes (I) - for the Symmetric Basin Shape - (유역형상에 따르는 이동강우의 유출영향분석(I) - 대칭유역형상 -)

  • Han, Kun Yeun;Jeon, Min Woo;Kim, Ji Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.15-25
    • /
    • 2006
  • Using kinematic wave equation, the influence of moving storms to runoff was analysised with a focus on watersheds. Watershed shapes used are the oblong, square and elongated shape, and the distribution types of moving storms used are uniform, advanced and intermediate type. The runoff hydrographs according to the rainfall distribution types were simulated and the characteristics were explored for the storms moving down, up and cross the watershed with various velocity. The shape, peak time and peak runoff of a runoff hydrograph are significantly influenced by spatial and temporal variability in rainfall and watershed shapes. A rain storm moving in the cross direction of channel flow produces a higher peak runoff than in the downstream direction and upstream direction. A peak runoff from a storm moving downstream exceeds that from a storm moving upstream. For storms moving downstream peak time was more delayed than for other storm direction in the case of elongated watershed. The runoff volume and time base of the hydrograph decreased with the increasing storm speed.

A Comparative Study of Storm Runoff Characteristics far Irrigated Paddy Fields and forest Watershed (관개논과 산림유역의 홍수유출 특성 비교)

  • 임상준;박승우;강문성
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.3
    • /
    • pp.65-72
    • /
    • 2002
  • Rainfall and runoff data from a forested watershed and irrigated rice paddies at the Bal-an experimental watershed were monitored and analyzed to investigate the variations of runoff characteristics with different land use. The comparisons were conducted fourteen storm events ranging 21.8∼190.2 mm of rainfall. Field data showed that direct runoff from paddies and forested watershed are not significantly different in volume. The peak discharge from forest watershed was less than that from paddies far lighter storms, but became greater fur heavier storms. The peak runoff from the forest watershed was 39 percent greater than from the paddies. The results demonstrate that paddies play an important role to reduce peak discharge from heavy storms as compared to forest.