• Title/Summary/Keyword: storm peak

Search Result 173, Processing Time 0.025 seconds

Changes in Dissolved Organic Matter Composition in the Namhan River during a Heavy Rain Event (집중 강우시 남한강 내 용존 유기물의 성상 변화)

  • Oh, Seijin;Woo, Sungho;Hur, Jin;Jung, Myung-Sook;Shin, Hyun-Sang
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.697-703
    • /
    • 2009
  • In this study, changes in the composition of dissolved organic carbon (DOC) were investigated using water samples collected at a downstream site of the Namhan River near the Lake Paldang ($N37^{\circ}24^{\prime}05.33^{{\prime}{\prime}}E127^{\circ}32^{\prime}25.01^{{\prime}{\prime}}$) during a heavy rain event from July 23 to July 28, 2008. The DOC concentrations varied from 1.68 to 3.18 mg/L with the maxium value at a peak of the river water level. Each DOC sample was fractionated into three compositions including hydrophilic (Hi), hydrophobic acid (HoA) and hydrophobic neutral (HoN) fractions. The results showed that HoA was most abundant fractions, constituting 47.2~56.5% of DOC. Refractory dissolved organic carbon (R-DOC) contents were also determined by measuring the DOC concentration after 28-day dark incubation of the samples. R-DOC content was in the range from 83 to 99% of DOC and it was significantly correlated with HoA contents (r = 0.91, p<0.005), while it did not exhibit such a good correlation with the fractions of Hi and HoN (p>0.02). Our results suggest that the HoA, which is associated with humic substances, may be a major composition of refractory organic matters in rivers during storm events.

Estimation of Synthetic Unit Hydrograph by Cluster Analysis Using Geomorphic Characteristics of Mid-size Watershed (지형학적 인자에 따라 군집화된 중소규모유역의 합성단위도법 제시)

  • Kim, Jin Gyeom;Kim, Jong min;Kang, Boosik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.439-449
    • /
    • 2016
  • The methodology of synthetic unit hydrograph using geomorphic characteristics was suggested. Six geomorphic components over 19 watersheds were used to estimate synthetic unit hydrograph and the test watersheds were classified into two groups on the basis of the area of $200km^2$. The regression formulas between standardized geomorphic characteristics for each group and peak quantities of specific streamflow and time of representative unit hydrograph were suggested and the Nash and the Clark unit hydrographs were derived. For verifying the derived unit hydrographs, the resulting hydrographs were compared with the ones using the existing Clark unit hydrographs based on the empirical parameter estimation for the 145 storm events during 2010 to 2011 for the additional six watersheds. The results showed the relatively higher performance over the existing synthetic unit hydrograph methods, which could be a contribution to the hydrologic estimation in ungauged watersheds.

Effects of γ-aminobutyric acid-enriched fermented sea tangle (Laminaria japonica) on brain derived neurotrophic factor-related muscle growth and lipolysis in middle aged women

  • Choi, Wook-chul;Reid, Storm N.S.;Ryu, Je-kwang;Kim, Yunsook;Jo, Young-Hong;Jeon, Byeong Hwan
    • ALGAE
    • /
    • v.31 no.2
    • /
    • pp.175-187
    • /
    • 2016
  • This study evaluated the effects of γ-aminobutyric acid (GABA)-enriched fermented sea tangle (GFST), as a functional food, on brain derived neurotrophic factor (BDNF)-related muscle growth and lipolysis, in a sarcopenic obesity high-risk group. Twenty-one middle-aged women (53-63 y) participated in this randomized, double-blind, placebo controlled study. Participants ingested either 1,000 mg of GFST (n = 10) or a sucrose placebo (CON) (n = 11) everyday, for 8 weeks. Subjects were asked to abstain from any regular exercise. Fasting venous blood samples, body composition and muscular strength were measured before and after supplementation period. Collectively, we demonstrated that GFST significantly decreased total fat mass and triglyceride in body composition, as well as significantly increasing serum BDNF (p < 0.001), angiotensin converting enzyme (p < 0.001), human growth hormone and insulin-like growth factor-1 levels (p < 0.05 and p < 0.05, respectively) accompanied by increased total lean mass (p < 0.01). Furthermore, the reported improvements in total work, knee extension and flexion at 60° s−1 (p < 0.05), and peak torque normalized to body weight of knee flexion at 60° s−1 (p < 0.05), support an ergogenic effect of GABA associated with increased growth factor levels. The use of GFST, as a functional food ingredient, to elicit anti-obesity effects and stimulate the release of muscle-related growth factors with increasing serum BDNF levels may provide a protective intervention for age-related degeneration such as sarcopenic obesity.

A Study on the Effect of Water Quality Improvement of a Storm Sewage by Detention Pond (저류지에 의한 우수의 수질개선 효과 연구)

  • Lee, Jong-Tae;Song, Chi-Heung;Gang, Tae-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.3
    • /
    • pp.351-364
    • /
    • 2000
  • The effect of water quality improvement of combined sewage by detention pond has been studied. It is convinced that the pollutant load and peak flow through the combined sewer by first rainfall and runoff can be decreased by detention pond sited at the outlet of small basin. Hydraulic modeling of detention panel was performed for two cases of sedimentation pond and gravel contact pond. It has been recognized that it is more efficient to reduce the pollutant of combined sewage when the combined sewage is released alter a fixed detention time in the detention pond than it is released continuously without detention time. The gravel contact detention pond shows higher pollutant removal rate than the sedimentation detention pond in all pollutants. When it comes to gravel contact detention pond, the gravel pond filled with crushed gravel has a higher pollutant removal rate than that filled with river gravel.

  • PDF

Assessment of Flood Probability Based on Temporal Distribution of Forecasted-Rainfall in Cheongmicheon Watershed (예보강우의 시간분포에 따른 청미천 유역의 홍수 확률 평가)

  • Lee, Hyunji;Jun, Sang Min;Hwang, Soon Ho;Choi, Soon-Kun;Park, Jihoon;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.17-27
    • /
    • 2020
  • The objective of this study was to assess the flood probability based on temporal distribution of forecasted-rainfall in Cheongmicheon watershed. In this study, 6-hr rainfalls were disaggregated into hourly rainfall using the Multiplicative Random Cascade (MRC) model, which is a stochastic rainfall time disaggregation model and it was repeated 100 times to make 100 rainfalls for each storm event. The watershed runoff was estimated using the Clark unit hydrograph method with disaggregated rainfall and watershed characteristics. Using the peak discharges of the simulated hydrographs, the probability distribution was determined and parameters were estimated. Using the parameters, the probability density function is shown and the flood probability is calculated by comparing with the design flood of Cheongmicheon watershed. The flood probability results differed for various values of rainfall and rainfall duration. In addition, the flood probability calculated in this study was compared with the actual flood damage in Cheongmicheon watershed (R2 = 0.7). Further, this study results could be used for flood forecasting.

Characteristics of Long Period Resonant Oscillations around Chukpyon Harbor (죽변항 수역의 장주기 수면진동 특성)

  • 정원무;박우선;채장원
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.2
    • /
    • pp.193-203
    • /
    • 1996
  • Long period waves were measured at two stations outside and inside Chukpyon Harbor using two pressure-type wave gauges for one week that covers storm sea period. Based on the collected data the characteristics of long-period resonant oscillations were analysed: the resonant period corresponding to the peak spectral density are slightly different from one to the component wave period with the largest amplification ratio, and the latter period is suggested as that of the first resonant mode. From the analysed field data and numerical modeling, the first resonant mode of Chukpyon Harbor region appeared to be around 12 minutes with amplification ratio of 7, whose amplitude varies 10-20 cm inside of the harbour, and also the second mode appeared to be around 6 minutes. The waves of 2-3 minute periods were resonated apparently in the harbour, which is considered to be generated from group-bounded irregular waves and non-linear wave-wave interaction etc. The linearly decreasing reflection coefficients used in the numerical modeling appeared to be an alternative in calculating reflected waves in harbor.

  • PDF

Effect of rainfall patterns on the response of water pressure and slope stability within a small catchment: A case study in Jinbu-Myeon, South Korea

  • Viet, Tran The;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.202-202
    • /
    • 2016
  • Despite the potentially major influence of rainstorm patterns on the prediction of shallow landslides, this relationship has not yet received significant attention. In this study, five typical temporal rainstorm patterns with the same cumulative amount and intensity components comprising Advanced (A1 and A2), Centralized (C), and Delayed (D1 and D2) were designed based on a historical rainstorm event occurred in 2006 in Mt. Jinbu area. The patterns were incorporated as the hydrological conditions into the Transient Rainfall Infiltration and Grid-based Regional Slope-stability Model (TRIGRS), in order to assess their influences on pore pressure variation and changes in the stability of the covering soil layer in the study area. The results revealed that not only the cumulative rainfall thresholds necessary to initiate landslides, but also the rate at which the factor of safety (FS) decreases and the time required to reach the critical state, are governed by rainstorm pattern. The sooner the peak rainfall intensity occurs, the smaller the cumulative rainfall threshold, and the shorter the time until landslide occurrence. Left-skewed rainfall patterns were found to have a greater effect on landslide initiation. More specifically, among the five different patterns, the Advanced storm pattern (A1) produced the most critical state, as it resulted in the highest pore pressure across the entire area for the shortest duration; the severity of response was then followed by patterns A2, C, D1, and D2. Thus, it can be concluded that rainfall patterns have a significant effect on the cumulative rainfall threshold, the build-up of pore pressure, and the occurrence of shallow landslides, both in space and time.

  • PDF

Clinical features, diagnosis, and outcomes of multisystem inflammatory syndrome in children associated with coronavirus disease 2019

  • Kwak, Ji Hee;Lee, Soo-Young;Choi, Jong-Woon;Korean Society of Kawasaki Diseasety of Pediatric Endocrinology (KSPE),
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.2
    • /
    • pp.68-75
    • /
    • 2021
  • The novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been spreading worldwide since December 2019. Hundreds of cases of children and adolescents with Kawasaki disease (KD)-like hyperinflammatory illness have been reported in Europe and the United States during the peak of the COVID-19 pandemic with or without shock and cardiac dysfunction. These patients tested positive for the polymerase chain reaction or antibody test for SARS-CoV-2 or had a history of recent exposure to COVID-19. Clinicians managing such patients coined new terms for this new illness, such as COVID-19-associated hyperinflammatory response syndrome, pediatric inflammatory multisystem syndrome temporally associated with COVID-19, or COVID-19-associated multisystem inflammatory syndrome in children (MIS-C). The pathogenesis of MIS-C is unclear; however, it appears similar to that of cytokine storm syndrome. MIS-C shows clinical features similar to KD, but differences between them exist with respect to age, sex, and racial distributions and proportions of patients with shock or cardiac dysfunction. Recommended treatments for MIS-C include intravenous immunoglobulin, corticosteroids, and inotropic or vasopressor support. For refractory patients, monoclonal antibody to interleukin-6 receptor (tocilizumab), interleukin-1 receptor antagonist (anakinra), or monoclonal antibody to tumor necrosis factor (infliximab) may be recommended. Patients with coronary aneurysms require aspirin or anticoagulant therapy. The prognosis of MIS-C seemed favorable without sequelae in most patients despite a reported mortality rate of approximately 1.5%.

Hydraulic and hydrologic performance evaluation of low impact development technology

  • Yano, Kimberly Ann;Geronimo, Franz Kevin;Reyes, Nash Jett;Choe, Hye-Seon;Jeon, Min-Su;Kim, Lee-Hyeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.325-325
    • /
    • 2020
  • Low impact development (LID) is a widely used technology that aims to reduce the peak flow volume and amount of pollutants in stormwater runoff while introducing physicochemical, biological or a combination of both mechanisms in order to improve water quality. This research aimed to determine the effect of hydrologic factors in removing the pollutants on stormwater runoff by an LID facility. Monitored storm events from 2010-2018 were analysed to evaluate the hydraulic and hydrological performance of a small constructed wetland (SCW). Standard methods for the examination water and wastewater were employed to assess the water quality of the collected samples (APHA et al, 1992). Primary hydrologic data were obtained from the Korea Meteorological Administration. The recorded average rainfall intensity and antecedent dry days (ADD) of SCW were 5.26 mm/hr and 7 days respectively. During the highest rainfall event (27 mm/hr), the removal efficiency of SCW for all the pollutants was ranging from 67% to 91%. While on the lowest rainfall event (0.7 mm/hr), the removal efficiency was ranging from -36% to 62%. Rainfall intensity has a significant effect to the removal efficiencies of each facility due to its dilution factor. In addition to that, there was no significant correlation of ADD to the mean concentrations of pollutants. Generally, stormwater runoff contains significant amount of pollutants that can cause harmful effects to the environment if not treated. Also, the component of this LID facility such as pre-treatment zone, media filters and vegetation contributed to the effectivity of the LID facilities in reducing the amounts of pollutants present in stormwater runof.

  • PDF

TEC VARIATIONS OVER KOREAN PENINSULA DURING MAGNETIC STORM (남쪽방향 행성간 자기장에 의해 발생한 자기 폭풍 동안 한반도 상공의 총 전자수 함유량 변화)

  • Ji, E.Y.;Choi, B.K.;Kim, K.H.;Lee, D.H.;Cho, J.H.;Chung, J.K.;Park, J.U.
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.1
    • /
    • pp.33-42
    • /
    • 2008
  • By analyzing the observations from a number of ground- and space-based instruments, including ionosonde, magnetometers, and ACE interplanetary data, we examine the response of the ionospheric TEC over Korea during 2003 magnetic storms. We found that the variation of vertical TEC is correlated with the southward turning of the interplanetary magnetic field $B_z$. It is suggested that the electric fields produced by the dynamo process in the high-latitude region and the prompt penetration in the low- latitude region are responsible for TEC increases. During the June 16 event, dayside TEC values increase more than 15%. And the ionospheric F2-layer peak height (hmF2) was ${\sim}300km$ higher and the vertical $E{\times}B$ drift (estimated from ground-based magnetometer equatorial electrojet delta H) showed downward drift, which may be due to the ionospheric disturbance dynamo electric field produced by the large amount of energy dissipation into high-latitude regions. In contrast, during November 20 event, the nightside TEC increases may be due to the prompt penetration westward electric field. The ionospheric F2-layer peak height was below 200km and the vertical $E{\times}B$ drift showed downward drift. Also, a strong correlation is observed between enhanced vertical TEC and enhaaced interplanetary electric field. It is shown that, even though TEC increases are caused by the different processes, the electric field disturbances in the ionosphere play an important role in the variation of TEC over Korea.