• Title/Summary/Keyword: storm and flood disaster

Search Result 85, Processing Time 0.026 seconds

A Study on the Management and Application for Prevention Information Communication System (방재정보통신시스템 관리 운용 및 응용에 관한 연구)

  • Kang, Heau-Jo
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.6
    • /
    • pp.611-618
    • /
    • 2008
  • The development of information society together with information telecommunication's influence on the human society is a ripple effect and getting wider. Among those ripple effects the disaster prevention is in the public eye in the present day. On the way to the ubiquitous society the main techniques to be concerned in ubiquitous sensor networks are the field of damage of storm and flood, safety facilities, traffic safety, industrial safety, energy safety, fire fighting, specific safety of radioactivity escape incident, environmental pollution, sea pollution, mountain and forrest disaster so on. In this paper the USN technique based on the disaster prevention communication technology service and its requirement technology and application are studied.

  • PDF

Development of an Open Source-based Spatial Analysis Tool for Storm and Flood Damage (풍수해 대비 오픈소스 기반 공간분석 도구 개발)

  • Kim, Minjun;Lee, Changgyu;Hwang, Suyeon;Ham, Jungsoo;Choi, Jinmu
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1435-1446
    • /
    • 2021
  • Wind and flood damage caused by typhoons causes a lot of damage to the Korean Peninsula every year. In order to minimize damage, a preliminary analysis of damage estimation and evacuation routes is required for rapid decision-making. This study attempted to develop an analysis module that can provide necessary information according to the disaster stage. For use in the preparation stage, A function to check past typhoon routes and past damage information similar to typhoon routes heading north, a function to extract isolated dangerous areas, and a function to extract reservoir collapse areas were developed. For use in the early stages of response and recovery, a function to extract the expected flooding range considering the current flooding depth, a function to analyze expected damage information on population, buildings, farmland, and a function to provide evacuation information were included. In addition, an automated web map creation method was proposed to express the analysis results. The analysis function was developed and modularized based on Python open source, and the web display function was implemented based on JavaScript. The tools developed in this study are expected to be efficiently used for rapid decision-making in the early stages of monitoring against storm and flood damage.

The Integration of Smart Disaster Site Support System and Prototype Simulation for Effective Disaster Response (효율적 재난대응을 위한 스마트 재난현장지원시스템 통합방안 및 프로토타입 시뮬레이션)

  • Park, Hyunchul;Park, Seona;Lee, Jinsoo;Pyeon, Muwook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.831-839
    • /
    • 2023
  • The purpose of this study is to quickly collect and analyze information generated in real-time at disaster sites to propose an integrated plan for an on-site support system that can support accurate disaster site situation identification and decision-making, and to review field applicability through prototype simulation. Accordingly, information collection, sharing, and convergence technologies that can be used at disaster sites were reviewed, and a plan for integrating a smart disaster site support system that can create an efficient flow of information resources and information necessary for the entire stage of disaster management was presented. In order to examine the possibility of operating the system with a prototype manufactured based on the integration plan, simulations were conducted based on the storm and flood disaster scenario, and it was confirmed that various functions in the system were implemented normally and displayed on the GIS situation board. Through this study, it is expected that efficient and active disaster response will be possible in a rapidly changing disaster environment.

Development Considerations of Natural Disaster Command System for Public Officers through Analysis of Disaster Response Activities at On-Scene (풍수해 현장대응업무 분석을 통한 재난현장 일반직 공무원 대응편제 개발시 고려사항 연구)

  • We, Kum Sook;Jeong, An Young
    • Journal of Korean Society of Disaster and Security
    • /
    • v.6 no.1
    • /
    • pp.47-53
    • /
    • 2013
  • Standard Incident Command System in Korea is that Incident Command System for Emergency Rescue Operation, which is commanded only by Fire Fighting Agencies. However, in the event of a disaster such as the flood, storm, or landslide disaster, there are many disaster response activities performed by the General Public Officers at the disaster on-scene. Yet, there isn't an Natural Disaster Command System for the General Public Officers in Korea. Thus, we have studied the response activities needed cooperation among agencies and proposed some considerations of the Natural Disaster Command System for General Public Officers. The system will be useful to response and recover disaster rapidly, seamlessly, and cooperatively among General Public Officers and the related agencies.

Development Strategy of Smart Urban Flood Management System based on High-Resolution Hydrologic Radar (고정밀 수문레이더 기반 스마트 도시홍수 관리시스템 개발방안)

  • YU, Wan-Sik;HWANG, Eui-Ho;CHAE, Hyo-Sok;KIM, Dae-Sun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.191-201
    • /
    • 2018
  • Recently, the frequency of heavy rainfall is increasing due to the effects of climate change, and heavy rainfall in urban areas has an unexpected and local characteristic. Floods caused by localized heavy rains in urban areas occur rapidly and frequently, so that life and property damage is also increasing. It is crucial how fast and precise observations can be made on successful flood management in urban areas. Local heavy rainfall is predominant in low-level storms, and the present large-scale radars are vulnerable to low-level rainfall detection and observations. Therefore, it is necessary to introduce a new urban flood forecasting system to minimize urban flood damage by upgrading the urban flood response system and improving observation and forecasting accuracy by quickly observing and predicting the local storm in urban areas. Currently, the WHAP (Water Hazard Information Platform) Project is promoting the goal of securing new concept water disaster response technology by linking high resolution hydrological information with rainfall prediction and urban flood model. In the WHAP Project, local rainfall detection and prediction, urban flood prediction and operation technology are being developed based on high-resolution small radar for observing the local rainfall. This study is expected to provide more accurate and detailed urban flood warning system by enabling high-resolution observation of urban areas.

A Study on Water Surface Detection Algorithm using Sentinel-1 Satellite Imagery (Sentinel-1 위성영상을 이용한 수표면 면적 추정 알고리즘에 관한 연구)

  • Lee, Dalgeun;Cheon, Eun Ji;Yun, Hyewon;Lee, Mi Hee
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.809-818
    • /
    • 2019
  • The Republic of Korea is very vulnerable to damage from storm and flood due to the rainfall phenomenon in summer and the topography of the narrow peninsula. The damage is recently getting worse because of the concentration rainfall. The accurate damage information production and analysis is required to prepare for future disaster. In this study, we analyzed the water surface area changes of Byeokjeong, Sajeom, Subu and Boryeong using Sentinel-1 satellite imagery. The surface area of the Sentinel-1 satellite, taken from May 2015 to August 2019, was preprocessed using RTC and image binarization using Otsu. The water surface area of reservoir was compared with the storage capacity from WAMIS and RIMS. As a result, Subu and Boryeong showed strong correlations of 0.850 and 0.941, respectively, and Byeokjeong and Sajeom showed the normal correlation of 0.651 and 0.657. Thus, SAR satellite imagery can be used to objective data as disaster management.

Low Impact Urban Development For Climate Change and Natural Disaster Prevention

  • Lee, Jung-Min;Jin, Kyu-Nam;Sim, Young-Jong;Kim, Hyo-Jin
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.54-55
    • /
    • 2015
  • Increase of impervious areas due to expansion of housing area, commercial and business building of urban is resulting in property change of stormwater runoff. Also, rapid urbanization and heavy rain due to climate change lead to urban flood and debris flow damage. In 2010 and 2011, Seoul had experienced shocking flooding damages by heavy rain. All these have led to increased interest in applying LID and decentralized rainwater management as a means of urban hydrologic cycle restoration and Natural Disaster Prevention such as flooding and so on. Urban development is a cause of expansion of impervious area. It reduces infiltration of rain water and may increase runoff volume from storms. Low Impact Development (LID) methods is to mimic the predevelopment site hydrology by using site design techniques that store, infiltrate, evaporate, detain runoff, and reduction flooding. Use of these techniques helps to reduce off-site runoff and ensure adequate groundwater recharge. The contents of this paper include a hydrologic analysis on a site and an evaluation of flooding reduction effect of LID practice facilities planned on the site. The region of this Case study is LID Rainwater Management Demonstration District in A-new town and P-new town, Korea. LID Practice facilities were designed on the area of rainwater management demonstration district in new town. We performed analysis of reduction effect about flood discharge. SWMM5 has been developed as a model to analyze the hydrologic impacts of LID facilities. For this study, we used weather data for around 38 years from January 1973 to August 2014 collected from the new town City Observatory near the district. Using the weather data, we performed continuous simulation of urban runoff in order to analyze impacts on the Stream from the development of the district and the installation of LID facilities. This is a new approach to stormwater management system which is different from existing end-of-pipe type management system. We suggest that LID should be discussed as a efficient method of urban disasters and climate change control in future land use, sewer and stormwater management planning.

  • PDF

Development of a Flood Disaster Evacuation Map Using Two-dimensional Flood Analysis and BIM Technology (2차원 침수해석과 BIM 기술을 활용한 홍수재난 대피지도 작성)

  • Jeong, Changsam
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.2
    • /
    • pp.53-63
    • /
    • 2020
  • In this study, the two-dimensional flow analysis model Hydro_AS-2D model was used to simulate the situation of flooding in Seongsangu and Uichang-gu in Changwon in the event of rising sea levels and extreme flooding, and the results were expressed on three-dimensional topography and the optimal evacuation path was derived using BIM technology. Climate change significantly affects two factors in terms of flood damage: rising sea levels and increasing extreme rainfall ideas. The rise in sea level itself can not only have the effect of flooding coastal areas and causing flooding, but it also raises the base flood level of the stream, causing the rise of the flood level throughout the stream. In this study, the rise of sea level by climate change, the rise of sea level by storm tidal wave by typhoon, and the extreme rainfall by typhoon were set as simulated conditions. The three-dimensional spatial information of the entire basin was constructed using the information of topographical space in Changwon and the information of the river crossing in the basic plan for river refurbishment. Using BIM technology, the target area was constructed as a three-dimensional urban information model that had information such as the building's height and location of the shelter on top of the three-dimensional topographical information, and the results of the numerical model were expressed on this model and used for analysis for evacuation planning. In the event of flooding, the escape route is determined by an algorithm that sets the path to the shelter according to changes in the inundation range over time, and the set path is expressed on intuitive three-dimensional spatial information and provided to the user.

Study on Spatial Disaster Information Common Standard Establishing and Joint Use of Disaster Information Display System (재난정보 표출시스템 구축 및 공동활용을 위한 재난공간정보 공통기준 연구)

  • JEON, Young-Jae;WON, Sang-Yeon;KWON, Chan-Oh;LEE, Jun-Hyeok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.68-82
    • /
    • 2020
  • Due to recent climate change, lager-scale storm and flood disasters have occurred. To prepare for this, the government is operating the national disaster management information system(NDMS), it is insufficient that unification and standardization of disaster site information data. In this study, to establish a disaster information display system, spatial DB was stored, quality standards were presented and the quality of spatial information currently provided was evaluated. As a result of evaluation, spatial information is established as different standard for each institution. So it is difficult to integrate and use. It considered that prepare a common standard to redeem this difference.

Development of infiltration facility by utilizing tree box for urban storm water runoff reduction (도시지역 우수유출 저감을 위한 식재박스형 침투시설의 개발)

  • Joo, Jin-Gul;Cho, Hye-Jin;Lee, Yu-Hwa;Kim, Lee-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5330-5336
    • /
    • 2011
  • It becomes more and more important to develop various infiltration facilities for healthy water cycle and reduction of urban storm water runoff. In this study, a infiltration facility by utilizing tree box was developed. The developed facility is capable of reducing storm water road runoff, improving urban water cycle, and performing other sustainable and environmental functions. Because the facility can be manufactured to a smaller size than an existing runoff reduction facility, it can be installed at various road types of not only existing urban areas, but new developed areas. If the facility is applied to four-lane roadways, it is expected to reduce 65% of rainfall runoff discharge. Urban flood control improvement can be accomplished by a wide application of the developed technique.