• Title/Summary/Keyword: storage system

Search Result 6,966, Processing Time 0.033 seconds

Numerical Simulation of Hydrogen Storage System using Magnesium Hydride Enhanced in its Heat Transfer (열전달 특성이 향상된 마그네슘 수소화물을 이용한 수소저장시스템의 전산모사)

  • KIM, SANG GON;SHIM, JAE HYEOK;IM, YEON HO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.469-476
    • /
    • 2015
  • The purpose of this work is to investigate main factors to design a solid-state hydrogen stroage system with magnesium hydride with 10 wt% graphite using numerical simulation tools. The heat transfer characteristic of this material was measured in order to perform the highly reliable simulation for this system. Based on the measured effective thermal conductivity, a transient heat and mass transfer simulation revealed that the total performance of hydrogen storage system is prone to depend on heat and mass transfer behaviors of hydrogen storage medium instead of its inherent kinetic rate for hydrogen adsorption. Furthermore, we demonstrate that the thermodynamic aspect between equlibrium presssure and temperature is one of key factor to design the hydrogen storage system with high performance using magnesium hydride.

On Identifying Operational Risk Factors and Establishing ALARP-Based Mitigation Measures using the Systems Engineering Process for Parcel Storage Devices Utilizing Active Loading Technology

  • Mi Rye Kim;Young Min Kim
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.59-73
    • /
    • 2023
  • Due to the steady growth of the online shopping market and contact-free consumption, the volume of parcels in South Korea continues to increase. However, there is a lack of manpower for delivery workers to handle the growing parcel volume, leading to frequent accidents related to delivery work. As a result, the government and local authorities strive to enhance last-mile logistics efficiency. As one of these measures, unmanned parcel storage lockers are installed and utilized to handle last-mile deliveries. However, the existing parcel storage involves the inconvenience of couriers having to put each parcel in each locker, and this is somewhat insufficient to relieve the workload of delivery workers. In this study, we propose parcel storage devices that use active loading technology to minimize the workload of delivery workers, extract operation risk factors to apply this system to actual sites, and establish risk reduction methods based on the ALARP concept. Through this study, we have laid the groundwork for improving the safety of the system by identifying and proposing mitigation measures for the risk factors associated with the proposed parcel storage devices utilizing active loading technology. When applied in practical settings in the future, this foundation will contribute to the development of a more efficient and secure system. By applying the ALARP concept, a systems engineering technique used in this research, to the development and maintenance of storage devices leveraging active loading technology, it is thought to make the development process more systematic and structured. Furthermore, through the risk management of the proposed system, it is anticipated that a systematic approach to quality management can be employed to minimize defects and provide a stable system. This is expected to be more useful than the existing unmanned parcel storage devices.

Drying and Low Temperature Storage System of Agricultural Products using the Air to Air Heat Pump (II) - Performance of Low Temperature Storage for Apples - (히트펌프를 이용한 농산물 건조 및 저온저장 시스템 (II) - 사과의 저온저장 성능 -)

  • Kang, Y.K.;Han, C.S.;Keum, D.H.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.2 s.121
    • /
    • pp.102-108
    • /
    • 2007
  • Heat pump systems are recognized to be heating and cooing systems. In this study, to check the practical application possibility of heat pump systems as low temperature storage systems and get basic data, apples of a long term storage items were stored and performance of low temperature storage and quality changes of apples were evaluated. Cooling coefficient of performance of the system was from 1.1 to 1.3. Although ambient air temperature varied widely from $-13^{\circ}C$ to $29.6^{\circ}C$ during low temperature storage period from January to June, the average temperature of low temperature storage chamber was $1.1^{\circ}C$ at setting temperature of $1.5^{\circ}C$. Sucrose of apples stored by the heat pump decreased from initial sucrose of 15.4% (Brix number) to final sucrose of 14.3%. Weight loss ratio of apples was 9.7% and internal and external view of apples after low temperature storage were very satisfactory with the naked eye.

ARISING TECHNICAL ISSUES IN THE DEVELOPMENT OF A TRANSPORTATION AND STORAGE SYSTEM OF SPENT NUCLEAR FUEL IN KOREA

  • Yoo, Jeong-Hyoun;Choi, Woo-Seok;Lee, Sang-Hoon;Seo, Ki-Seog
    • Nuclear Engineering and Technology
    • /
    • v.43 no.5
    • /
    • pp.413-420
    • /
    • 2011
  • In Korea, although the concept of dry storage system for PWR spent fuels first emerged in the early 1990s, wet storage inside nuclear reactor buildings remains the dominant storage paradigm. Furthermore, as the amount of discharged fuel from nuclear power plants increases, nuclear power plants are confronted with the problem of meeting storage capacity demand. Various measures have been taken to resolve this problem. Dry storage systems along with transportation of spent fuel either on-site or off-site are regarded as the most feasible measure. In order to develop dry storage and transportation system safety analyses, development of design techniques, full scale performance tests, and research on key material degradation should be conducted. This paper deals with two topics, structural analysis methodology to assess cumulative damage to transportation packages and the effects of an aircraft engine crash on a dual purpose cask. These newly emerging issues are selected from among the many technical issues related to the development of transportation and storage systems of spent fuels. In the design process, appropriate analytical methods, procedures, and tools are used in conjunction with a suitably selected test procedure and assumptions such as jet engine simulation for postulated design events and a beyond design basis accident.

A Converging Exact Algorithm for Determining an Optimal 3-Class-Based Dedicated Linear Storage System

  • Yang Moon-Hee
    • Management Science and Financial Engineering
    • /
    • v.12 no.1
    • /
    • pp.79-94
    • /
    • 2006
  • In this paper, we readdress a layout design problem, PTL[3], for determining an optimal 3-class-based dedicated linear storage layout in a class of unit load storage systems. Based on some fundamental properties derived, we provide a converging exact algorithm with O(n[logn]), which is more efficient than that of Yang and Kim [8] and can be applied to PTL[K] with $K{\ge}4$ in order to reduce computational execution time. In addition, we prove that the necessary condition suggested by them is also a sufficient condition to PTL[3].

Design of Micro Flywheel Energy Storage System (초소형 플라이휠 에너지 저장장치의 설계)

  • Yi, Ji-Eun;Yoo, Seong-Yeol;Noh, Myoung-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.879-884
    • /
    • 2007
  • Flywheel energy storage systems have advantages over other types of energy storage devices in such aspects as unlimited charge/discharge cycles and environmental friendliness. In this paper we propose a millimeter scale flywheel energy storage device. The flywheel is supported by a pair of passive magnetic bearings and rotated by a toroidally wound electric motor/generator. The geometry of the bearings is optimized for the maximum dynamic performance.

  • PDF

태양열 난방의 계절에 따른 에너지 저장

  • BRAUN J. E.;KEEIN S. A.;MITCHELL J. W.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.12 no.2
    • /
    • pp.101-113
    • /
    • 1983
  • 논문은 물을 저장물질로 사용하는 공간난방에 있어서의 seasonal storage의 몇 가지 중요한 문제연구하고 있다. 집열기 면적과 저장체적 그리고 시스템 성능간의 관계를 transient simulation program(TRNSYS)을 사용하여 조사하였다. 여기서 seasonal storage의 가장 일어나기 쉬운 상태가 나타내어지는데 seasonal storage system의 설계에 특히 역점을 두고 있다. 이러한 설계방법은 몇 일간에서 seasonal storage에 이르는 seasonal pacity (저장용량)에 대하여 적용되어진다. 비용과 관련하여 이러한 설계방법은 seasonal storage system 경제성 (economic viability)을 추정하는데 유용할 것이다. 또한 시스템 설계에서 부하 열기의 크기 탱크단열 집열기 경사 매년 기후변화의 중요성이 조사되고 있다.

  • PDF

Modeling and Optimization of Rice Drying and Storage System in Korea(II) -Cost Analysis and Optimum Size Estimation- (한국(韓國)에 있어서 미곡(米穀)의 건조(乾燥) 및 저장(貯藏)을 위한 시스템의 모델 개발(開發)과 적정규모(適正規模) 선정(選定)에 관(關)한 연구(硏究)(II) -모델 시스템의 이용비용(利用費用) 분석(分析) 및 적정규모(適正規模) 산정(算定)-)

  • Park, K.K.;Yoon, H.S.;Kim, J.Y.
    • Journal of Biosystems Engineering
    • /
    • v.12 no.1
    • /
    • pp.31-38
    • /
    • 1987
  • In order to improve the traditional post harvest system in Korea, a model for mechanized rice drying and storage system was developed and introduced as the first part of the study(Park, 1986). As the second part of the study, capital requirement and cost of the model system was analyzed. Also, optimum size of the model system was estimated by comparing with the traditional harvest system. From the study, the following results can be concluded: 1. The capital requirement of the model system decreases as the model size increases. For example, a model system having 500 ton storage capacity requires 439,000 Won/ton. However it requires 313,200 Won/ton only, if the model size increases to 1000 ton. 2. Also, total cost of the model system decreases as the model size increases. For example, total costs of the model system having 500 ton and 1000 ton storage capacity are 101,208 Won/ton and 69,320 Won/ton, respectively. 3. The breakeven point (optimum size) of the model can be estimated around 630 ton storage capacity if the operation rate is assumed as 100%. However, the optimum size of the model is 710 ton, if the operation rate it assumed 80%.

  • PDF

Investigation of Thermal Management Parameters of Metal Hydride Based Hydrogen Storage System (금속수소화물 기반 수소저장시스템의 열관리 인자 조사)

  • PARK, CHU SIK;KIM, JONG WON;BAE, KI KWANG;JEONG, SEONG UK;KANG, KYOUNG SOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.3
    • /
    • pp.251-259
    • /
    • 2018
  • Metal hydride based hydrogen storage under moderate temperature and pressure gives the safety advantage over the gas and liquid storage methods. Still solid-state hydrogen storage including metal hydride is below the DOE target level for automotive applications, but it can be adapted to stationary or miliary application reasonably. In order to develop a modular solid state hydrogen storage system that can be applied to a distributed power supply system composed of renewable energy - water electrolysis - fuel cell, the heat transfer and hydrogen storage characteristics of the metal hydride necessary for the module system design were investigated using AB5 type metal hydride, LCN2 ($La_{0.9}Ce_{0.1}Ni_5$). The planetary high energy mill (PHEM) treatment of LCN2 confirmed the initial hydrogen storage activation and hydrogen storage capacity through surface modification of LCN2 material. Expanded natural graphite (ENG) addition to LCN2, and compression molding at 500 atm improved the thermal conductivity of the solid hydrogen storage material.

Optical Performance Evaluation of SIL Assembly with Lateral Shearing Interferometer (층 밀리 간섭계를 이용한 고체침지렌즈의 광학적 성능 평가)

  • Lee, Jin-Eui;Kim, Wan-Chin;Choi, Hyun;Kim, Tae-Seob;Yoon, Yong-Joong;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.4
    • /
    • pp.224-229
    • /
    • 2006
  • There has been studied flow to minimize the spot size to increase data capacity. Optical data storage devices are being developed near practical limits with wavelength and NA of 405nm and 0.85. There has been studied many types of next generation storage devices such as blu-ray multilayer system, probe based data storage and holographic data storage. Among these data storage devices, solid immersion lens(SIL) based near field recording (NFR) has been widely studied. In this system, SIL is the key component that focuses the laser beam with a very small size which enables ultra high data capacity. Therefore, optical performance evaluation system is required for SIL assembly. In this dissertation, a simple and accurate SIL assembly measurement method is proposed with wedge plate lateral shearing interferometer(LSI). Wedge plate LSI is cheaper than commercialized interferometer, robust to the vibration and the moving distance for phase shifting is large that is order of micrometer. We designed the thickness, wedge angle, material, surface quality and wavelength of wedge plate as 1mm, 0.02degree, fused silica, lamda/10(10-5) and 405nm, respectively. Also, we confirmed simulation and experimental results with quantitative analysis. This simple wedge plate LSI can be applied to different types of SIL such as solid immersion mirror(SIM), hemispherical, super-hemispherical and elliptical SIL.

  • PDF