• Title/Summary/Keyword: storage proteins

Search Result 250, Processing Time 0.027 seconds

Studies on the Denaturation of PSE Porcine Muscle Proteins by Differential Scanning Calorimetry (DSC를 이용한 PSE돈(豚) 육단백질(肉蛋白質)의 변성(變性)에 관한 연구(硏究))

  • Kim, Cheon-Jei;Honikel, K.O.;Choe, Byung-Kyu
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.173-179
    • /
    • 1989
  • The influence of the storage temperature and time after slaughter on the thermal denaturation of PSE porcine muscle protein was studied by differential scanning calorimetry and by measuring the solubility of the sarcoplasmic proteins. In the DSC therodiagram a decrease of the endotherm enthalpy of the myosin plus sarcoplasmic proteins in PSE muscle could be observed with an increase in the storage temperature and time of post mortem. Storage temperature at $20^{\circ}C$ during the first four hours of post mortem resulted in relatively slight denaturation of myosin plus sarcoplasmic proteins in PSE muscle. Storage temperature above $25^{\circ}C$ caused to increase the denaturation of muscle proteins. The minimal drip loss in PSE muscle could be observed, when the muscle was cooled to $2^{\circ}C$ as quickly as possible post mortem. However, when stored for several hours of post morte at a temperature between $32^{\circ}C-38^{\circ}C$, the drip loss reached the level established for PSE muscle. The paleness of PSE muscle could be prevented to some extent by rapid chill to $20^{\circ}C$ post mortem. The more the muscle proteins in the PSE muscle become denatured during the early storage period of post mortem, the more the drip loss increases. With the increase in the denaturation of myosin plus sarcoplasmic proteins in PSE muscle with regard to temperature of post mortem, there was a corresponding decrease in the solubility of the sarcoplasmic proteins in PSE muscle.

  • PDF

Changing Wheat Quality with the Modification of Storage Protein Structure

  • Tamas, Laszlo;Bekes, Ferenc;Morrell, Matthew K.;Appels, Rudi
    • Journal of Plant Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.13-19
    • /
    • 1999
  • The visco-elastic properties of gluten are major determinants of the processing properties of doughs. These visco-elastic properties are strongly influenced by the ratio of monomeric and polymeric proteins and the size distribution of the polymeric proteins, which make up the gluten fraction of the dough. Recent studies have revealed that other features, such as the number of the cysteine residues of the HMW-GS, also play an important role in determining the functional characteristics. To modify the processing properties at molecular level, the relationship between the structure of molecules and dough properties has to be understood. In order to explore the relationships between individual proteins and dough properties, we have developed procedures for incorporating bacterially expressed proteins into doughs, and measuring their functional properties in small-scale equipment. A major problem in investigating the structure/function relationships of individual seed storage proteins is to obtain sufficient amounts of pure polypeptides from the complex families of proteins expressed in the endosperm. Therefore, we have established a simplified model system in which we produce specific protein genes through bacterial expression and test their functional properties in smallscale apparatus after incorporation into base flour. An S poor protein gene has been chosen as a template gene. This template gene has been modified using standard recombinant DNA techniques in order to test the effects of varying the number and position of cysteine residues, and the size of the protein. Doughs have been mixed in small scale apparatus and characterized with respect to their polymeric composition and their functional properties, including dough mixing, extensibility and small scale bating. We conclude that dough characteristics can be manipulated in a predictable manner by altering the cysteine residues and the size of high molecular weight glutenins.

  • PDF

Regulation Mechanism of Soybean Storage Protein Gene Expression (대두 저장단백질 유전자의 발현 조절 메카니즘)

  • 최양도;김정호
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.283-307
    • /
    • 1987
  • Glycinin and $\beta$-conglycinin are the most abundant storage protein in soybean. These proteins are known to be synthesized predominantly during germination and cell expansion phase of seed development for short period, and synthesized not in other tissues. Genes encoding these storage proteins are useful system to study the mechanism of development stage and tissue specific gene expression in eukaryotes, especially plants, at the molecular level. The cDNA and genomic clones coding for glycinin have been isolated and regulation mechanism of the gene expression has been studied. Initially, development and tissue-specific expression of the glycinin gene is regulated at the level of transcription. Post-transcriptional processing is also responsible for delayed accumulation of the mRNA. Translational control of the storage protein gene has not been reported. Post-translational modification is another strategic point to regulate the expression of the gene. It is possible to identify positive and/or negative reguratory clements in vivo by producing transgenic plants agter gene manipulation. Elucidation of activation and repression mechanism of soybean storage protein genes will contribute to the understanding of the other plant and eukaryotic genes at molecular level.

  • PDF

Acetylation of Sarcoplasmic and Myofibrillar Proteins were Associated with Ovine Meat Quality Attributes at Early Postmortem

  • Zhang, Yejun;Li, Xin;Zhang, Dequan;Ren, Chi;Bai, Yuqiang;Ijaz, Muawuz;Wang, Xu;Zhao, Yingxin
    • Food Science of Animal Resources
    • /
    • v.41 no.4
    • /
    • pp.650-663
    • /
    • 2021
  • The objective of this study was to examine the relationship between meat quality attributes and the changes of sarcoplasmic protein acetylation and myofibrillar protein acetylation in lamb longissimus thoracis et lumborum muscles at different postmortem phases. Protein acetylation, color, pH, shear force, myofibril fragmentation index and cooking loss were measured. The total level of acetylated sarcoplasmic proteins showed a negative relation with pH, a positive relation with a*, b* and cooking loss at the pre-rigor phase. Sarcoplasmic proteins acetylation affected postmortem pH by regulating glycolysis, which in turn affects color and cooking loss. The total level of acetylated myofibrillar proteins showed a positive relation with shear force at the pre-rigor phase. Myofibrillar proteins acetylation affected meat tenderness by regulating muscle contraction. This study indicated that acetylation played a regulatory role of meat color, water-holding capacity, and tenderization process at early postmortem.

Variations in Seed Storage Protein among Different Colored Soybean Varieties

  • Kim, Sun-Lim;Yun, Hong-Tae;Moon, Jung-Kyung;Park, Keum-Yong;Lee, Yeong-Ho;Ryu, Yong-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.2
    • /
    • pp.141-147
    • /
    • 2004
  • This study was carried out to know the variation of soybean seed proteins, 11S and 7S globulins, and their amino acid compositions among different colored soybean varieties, 'Danbaegkong' (yellow), 'Pureunkong' (green) 'Jinyulkong' (brown), and 'Geoumjeongkong l' (black). Soybean seed proteins showed a wide range in molecular size, but the electrophoresis patterns of total seed protein subunits showed a similarity among different colored soybean varieties. Amino acid compositions of total seed proteins were similar for all soybean varieties tested. However, soybean varieties showed low composition rates in sulfur containing amino acids. The composition rates of cysteine and methionine in the 11S globulins were higher than those of total seed proteins and 7S globulins. Glutamic acid and glycine were higher in the 11S and 7S globulins than those of total seed proteins. However, the levels of methionine and phenylalanine are high in the 11S globulins, but those of valine and lysin are slightly lower than the 7S globulins. By using HPLC, we tried to analyse the soybean seed proteins. The 11S globulin was composed of 10 major peaks whereas the 7S globulin was composed of 4 major peaks. The composition rates of 11S related proteins have a tendency to increasing during the maturing whereas those of 7S related proteins have a tendency to decreasing. Composition rates of each peaks among different colored soybean varieties suggested that soybean seed proteins are varied, although they showed similarity in the electrophoresis patterns, and understanding of this characteristics is important for the utilization of soybeans.

Retinal in the Eggs of Phylum Chordata: A Novel Storage Mode of Retinoid

  • lrie, Toshiaki;Seki, Takaharu;Azuma, Masami;Kajiwara, Shogo
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.261-263
    • /
    • 2002
  • The presence of retinals (retinal and 3,4-didehydroretinal) has been known in the eggs of wide range of oviparous vertebrates, but the biological significance of the egg retinals has yet to be clarified. We here show that retinals are the major components of retinoids in the eggs of all species of chordate animals we examined. The egg retinals were commonly bound to egg yolk proteins, the storage proteins, via a Schiff base linkage. The Schiff base linkage, which protects the reactive aldehyde group, would negate the toxicity of aldehyde, and enable to accumulate much amount of retinals. The retinals in chordate eggs are considered to be the precursor of functional retinoids, such as photoreceptive pigment chromophores and retinoic acid, during development. The results of the present research strongly suggest that retinals in the eggs of oviparous chordates are the common and essential mode of retinoid storage.

  • PDF

Translocation of Seed Storage Proteins into Microsomes Isoalted from Rice Endosperm Cells

  • Kim, Woo Taek
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.293-299
    • /
    • 1994
  • Developing rice endosperm cells display two morphologically distinct rough endoplasmic reticulum (ER) membranes, the cisternae ER (C-ER) and theprotein body ER (PB-ER), the latter delimiting the prolamine protein bodies. We (Li et al., 1993) have recently shown that the storage protein mRNAs are not randomly distributed on these ER types; the C-ER is enriched for glutelin mRNAs, whereas the PB-ER harbors predominantly prolamine transcripts. To address whether these ER types have differnet capacities to translate these mRNAs and translocate their proteins into the lumen, a microsomal fraction enriched in C-ER vesicles was prepared from devleoping rice seeds. When present in an in vitro translatin system, the microsomes were able to proteolytically remove the signal peptide and internalize both preproglutelin and preprolamine within the microsomal vesicles. Of the two species, preprolamine was more effectively translocated and processed. These results suggest that the C-ER has the capacity to recognize and bind both storage protein mRNAs during protein synthesis. Moreover, efficient translocation and processing of glutelin requires additional factors that are deficient or absent in the in vitro system.

  • PDF

A Study of Storage Protein in Lymantria dispar L. (매미나방(Lymantria dispar L.)의 저장단백질에 관한 연구)

  • 원종엽;김학열
    • The Korean Journal of Zoology
    • /
    • v.33 no.3
    • /
    • pp.346-353
    • /
    • 1990
  • Two storage proteins, storage protein-1 (SPl) and storage protein -2 (SP2) were found in hemolymph and fat body during the development of Lymantria dispar L. SP1 has a molecular weight of 440, 000 and consists of six identical subunits (MW = 72, 000). The pI value of SP1 was 6.2. SP1 shows a similar high concentration during the late larval stage in both male and female. However, SP1 represents a quite different pattern during pupal stage between male and female. SP1 gradually decreases in male but increases in female. SP1 is immunologically identical to yolk protein. Also, SP1 of L. dispar shows immunologically partial reactions with storage proteins of Hyphantria cunea and Galleria mellonella.

  • PDF

Application of an Antimicrobial Protein Film in Beef Patties Packaging

  • Lee, Ji-Hyun;Song, Kyung Bin
    • Food Science of Animal Resources
    • /
    • v.35 no.5
    • /
    • pp.611-614
    • /
    • 2015
  • This study was performed to apply a protein film containing a natural antimicrobial compound to meat packaging and determine quality change of meat during storage. Proteins obtained from the by-products of food processing have been utilized as biodegradable film sources. Porcine meat and bone meal (MBM) is obtained during meat processing, and proteins from the MBM can be extracted and used as a film base material. Previously, an antimicrobial MBM film containing coriander oil (CO) was prepared and its physical properties and antimicrobial activity were characterized. In this study, the antimicrobial MBM-CO film was applied to beef patties packaging, and the microbial population and the degree of lipid oxidation were determined during storage at 4℃ for 15 d. The population of inoculated E. coli O157:H7 in the samples wrapped with the MBM-CO film was 6.78 log colony forming unit (CFU)/g after 15 d of storage, whereas the control had 8.05 Log CFU/g, thus reducing the microbial population by 1.29 Log CFU/g. In addition, retardation of lipid oxidation in the patties was observed during storage for the samples packaged by the MBM-CO film, compared with the control samples. These results suggest that the MBM-CO film can be useful for enhancing the quality of beef patties during storage.

Comparative Studies on Protein Composition of Whey from Raw and Pasteurized Milk by Polyacrylamide Gel Electrophoresis (Polyacrylamide Gel 전기영동법에 의한 생유 및 살균처리유의 Whey 단백질 조성에 관한 비교 연구)

  • 남궁석;우세홍;조종후
    • Journal of Food Hygiene and Safety
    • /
    • v.5 no.4
    • /
    • pp.219-228
    • /
    • 1990
  • Whey proteins in milk were analyzed by polyacrylamide gel electrophoresis and compared with respect to electrophoregrams, densitograms and concentrations of whey proteins in raw and market milk classified according to 3 kinds of pasteurization by low temperature long time. high temperature short time and ultra-high temperature short time. Relative composition of major whey protein constituents such as bovine serum albumin, ${\alpha}\;-\;lactalbumin\;and\;{\beta}-lactoglobulin$ in raw milk were 3.71:11.44:84.85 and not affected by low temperature long time and high temperature short time pasteurization, even though there were the tendencies of some declining in the actual concentrations. But by ultra-high temperature short time pasteurization compositions of whey protein were changed to 0: 64.75: 35 in which reflected the disapprearance of bovine serum albumin and the extensive decrease of ${\beta}-lactoglobulin$. Storage of low temperature pasteurized milk at $5^{\circ}C$ resulted in a slight decrease of ${\alpha}\;-\;lactalbumin\;a\;{\beta}-lactoglobulin$, but storage at $25^{\circ}C$ did not make any changes until3rd days of storage. Most of whey proteins in high temperature short time pasteurized milk were not affected during storage at $5^{\circ}C\;and\;25^{\circ}C$, but bovine serum albumin and ${\alpha}\;-lactalbumin$ diminished in 2-3 days of storage. Whey proteins of milk treated with ultra-high temeperature were not affected during storage at $5^{\circ}C\;and\;25^{\circ}C$ except a slight decrease of ${\alpha}\;-lactalbumin$ in 2nd day of storage at $5^{\circ}C$.

  • PDF