• Title/Summary/Keyword: storage facility

Search Result 596, Processing Time 0.026 seconds

Study on Demand Prediction of Cold Storage Facilities (냉동냉장설비의 수요예측에 관한 연구)

  • Son, Chang-Hyo;Oh, Hoo-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.9
    • /
    • pp.587-594
    • /
    • 2011
  • This paper describes the investigation on current state of cold storage facilities, and analysis on the demand prediction in the near future. And based on the analysis results, we prospect the scale of cold storage facilities in the near future. The main analysis results are summarized by the followings ; The present circumstances of cold storage facility are determined by investigating actual loading capacity, average stock amounts, and return number of cold storage facility. From the results, the present situation for cold storage facility is about 3% over. It is found that the average stock amounts increase gradually, and accordingly that the demand of cold storage facility is predicted to be increased, resulting that the capacity of cold storage facilities in 2013 expects to reach up to 5,250,000 ton. It is considered that the results of demand prediction has significant implications on the management of cold storage facility in the near future.

Design and Effectiveness Analysis of prefabricated Storage-type infiltration facility (조립식 저류형 침투시설의 설계 및 공간적용 효과분석)

  • Lee, Tae-Goo
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.103-108
    • /
    • 2016
  • Purpose: This study has developed economical and environmentally friendly storage type infiltration facilities that securing storage space inside the infiltration facility. It focused on preventing flooding rainfall as well as securing more groundwater through rainwater infiltration that is valuable for the dry season. In addition, this study compares the installation cost of the storage-type infiltration facility to the cost of the conventional rainwater management facilities to demonstrate the economic efficiency of the storage-based infiltration facility. Method: Unit infiltration of this facility is calculated and when it was applied to a certain capacity, the amount of countermeasures are proposed in case study. Result: Unit infiltration of it is $0.2541m^3/hr$ and un it Temporary storage of it is $1.054m^3/m$. As a result, the infiltration effect of this facility is $1.306m^3/hr$. The cost was approximately 30% reduction in time to apply the storage type infiltration facility as compared with the case to apply the existing penetration of the facilities. Since the penetration of the existing facilities is smaller than that and it has much securing volume to process the same the amount of countermeasures. Therefore, it is determined that the cost significantly increases in material cost part. On the other hand, storage type infiltration facility is installed a small quantity because Unit Temporary storage and infiltration are bigger than that. So, it occurred to reduce material and installation costs.

Study on the determination of optimum size of storage tank and intercepting capacity for CSOs reduction in urban area (도시지역 CSOs 저감을 위한 저류조 및 이송관로의 최적 용량결정에 관한 연구)

  • Lee, Kwan Yong;Choi, Won Suk;Lee, Yong Jae;Koo, Won Suk;Song, Chang Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.735-745
    • /
    • 2012
  • Storage method is one of major measures for reduction of CSOs pollutant loads and several projects have been done nationwide. But systematic analysis of intercepting capacity has not been studied to determine optimum size of storage facility. In this research, not only storage volume but also intercepting capacity which means flow capacity from intercepting facility to CSOs storage facility was studied and optimum sizing method for storage facility was proposed. The result shows that pollutants reduction efficiency can be increased significantly by increasing intercepting capacity and it might reduce storage volume and total construction costs. Intercepting capacity for the study area was evaluated and it was shown as equivalent to 83 % probability rainfall intensity.

Development of Dome-Type Cold Storage Facility Using 3-D CFD Simulation (3차원 CFD 시뮬레이션을 이용한 돔형 저온저장고 개발)

  • 양길모;고학균;홍지향
    • Journal of Biosystems Engineering
    • /
    • v.28 no.1
    • /
    • pp.35-44
    • /
    • 2003
  • This study was conducted to develop proper model for cold storage facility that could of for uniform heat movement and air movement f3r green grocery and improve improper design of the existing container-type cold storage facility. For that reason, new model(dome-type) cold storage facility was developed using 3-D CFD(computational fluid dynamics) simulation. The size was 6m${\times}$6m${\times}$5m. Its size and configuration were same to simulation model. Unit cooler was designed to send cold air in 4 side ways. A dome-type cold storage facility showed uniform distributions of air temperature and velocity because cold air was forced to move down along the ceiling and the wall and then circulated to the unit cooler from the central part of the floor. Dome-type cold storage facility also showed by low wind velocity, below 1 m/s that could minimized cold damage and quality deterioration.

Operation Strategy for a Multi-functional Storage Facility (하수저류시설 운영 전략 연구)

  • Yun, So-Young;Lim, Yoon-Dae;Oh, Jei-ll
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.959-970
    • /
    • 2011
  • The frequent occurrence of sewer flooding and the intermittent discharge of non-point pollutions into the receiving water body are emerging issues recently due to the climate change and urbanization. These problems might be solved by introducing a multifunctional storage facility. Unlike a single-purpose storage facility, a multi-purpose storage facility should be operated at an instant to meet for flood prevention, reduction of non-point pollution and/or rainwater reuse. Considering various operational combinations it is suggested that prevention of sewer flooding coupled with reduction of non-point pollution is the most effective operational strategy for a multi-functional storage facility.

Feasibility Study on Installing a Multi-functional Storage Facility (하수저류시설 타당성 분석 연구)

  • Ryu, Jae-Na;Oh, Jei-ll;Lee, Kyoung-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.935-947
    • /
    • 2011
  • In the era of climate change, the feasibility of a 'multi-functional storage facility' was evaluated in terms of various key performance indices such as flooding prevention effects, urban pollution reduction effects, and rainwater harvesting effects. As a result, the Korea Ministry of Environment introduced a new concept of 'multi-functional storage facility' for sewer flooding prevention and urban non-point pollution reduction. Prior to introducing these infrastructure (a large underground storage facility), the more details were needed to be examined carefully in all of technical aspects of construction and management. It was also well known that the validity of installation of 'multi-functional storage facility' was sometimes weakened because of a low B/C ratio.

Particle Removal in a Rainwater Storage Tank, and Suggestions for Operation & Design (빗물저장조에서 입자의 제거특성 및 운전과 설계시 고려사항)

  • Mun, Jungsoo;Yoo, Hyoungkeun;Han, Mooyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.131-138
    • /
    • 2007
  • A rainwater utilization facility consists of its catchment area, treatment facility, storage tank, supply facility and pipes in general. The rainwater storage tank which occupies the largest area of the facility has been usually considered quantitatively for determining the storage capacity. Hence, there is little information on water quality improvement by sedimentation in a rainwater storage tank in operation. In this study, we measured the rainwater quality in a rainwater storage tank in operation during late spring and summer, and showed water quality improvement of turbidity removal of 25~46% by sedimentation in a rainwater storage tank under a fixed water level without inflow and outflow after runoff ceased. It is necessary to have a considerable distance between the inlet and outlet of the tank and, if possible, it is recommended that the design should allow for an effective water depth of over 3 m and supply rainwater near the water surface. The operation method which increases the retention time by stopping rainwater supply for insuring low turbidity is recommended when the turbidity of rainwater runoff is high. And also more efficient operation and maintenance of the rainwater utilization facility is expected through the tailored design and operation of the facility considering particle removal and behavior.

An Economy Analysis on the Underground Food Storage (농수축산물저장을 위한 지하암반냉동창고의 경제성분석)

  • 김준홍
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.38
    • /
    • pp.189-197
    • /
    • 1996
  • It is in general reported that construction cost in an underground storage facility is less than that of the same capacity and features in an aboveground facility. Since these costs have a derivative with respect to facility size and fridging unit, the cost of construction and fridging unit are sensitive to location of storage, items to store, and rock quality of storage site. In this paper, to analyse an economic investment point for the underground food storage relative to aboveground storage, we compared these two models which have equivalent annual cost with the total cost that consists of initial facility investment cost and annual operation cost. Based on comparison of the economic investment in the underground with aboveground storage. an economic initial investment cost has been suggested for storing the agricultural and fish products.

  • PDF

Development of Neuro-Fuzzy System for Cold Storage Facility (저온저장고의 뉴로-퍼지 제어시스템 개발)

  • 양길모;고학균;홍지향
    • Journal of Biosystems Engineering
    • /
    • v.28 no.2
    • /
    • pp.117-126
    • /
    • 2003
  • This study was conducted to develop precision control system fur cold storage facility that could offer safe storage environment for green grocery. For that reason of neuro-fuzzy control system with learning ability algorithm and single chip neuro-fuzzy micro controller was developed for cold storage facility. Dynamic characteristics and hunting of neuro-fuzzy control system were far superior to on-off and fuzzy control system. Dynamic characteristics of temperature were faster than on-off control system by 1,555 seconds(123% faster) and fuzzy control system by 460 seconds(36.4% faster). When system was arrived at steady state. hunting was ${\pm}$0.5$^{\circ}C$ in on-off control system, ${\pm}$0.4$^{\circ}C$ in fuzzy control system, and ${\pm}$0.3$^{\circ}C$ in neuro-fuzzy control system. Hunting of humidity and wind velocity was also controlled precisely by 70 to 72.5% and 1m/s For storage experiment with onion, characteristics of neuro-fuzzy control system were tested. Dynamic characteristics of neuro-fuzzy control system made cold storage facility conducted precooling ability and minimized hunting.

Prediction of Air Movement and Temperature Distribution at Different Store Methods Using 3-D CFD Simulation in Forced-Air Cooling Facility

  • Yang, G.M.;Koh, H.K.
    • Agricultural and Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.65-72
    • /
    • 2002
  • Temperature is the most influential environment parameter which affects the quality change of agricultural products in cold storage. Therefore, it is essential to keep the uniform temperature distribution in the storage room. This study was performed to analyze the air movement and temperature distribution in the forced recirculating cold storage facility and to simulate optimum storage method of green groceries using 3-D CFD(three dimensional computational fluid dynamics) computer simulation which applied the standard $textsc{k}$-$\varepsilon$ turbulence model and FVM(finite volume method). The simulation was validated by the experimental results for onion storage and the simulation model was used to simulate the temperature and velocity distribution in the storage room with reference to the change of storage method such as location of storage, no stores, bulk storage, and pallet storage. In case of no stores, internal airflow was circulated without stagnation and consequently air movement and temperature distribution were uniform. In case of bulk storage, air movement was stagnated so much and temperature distribution of onion was not uniform. Furthermore, the inner temperature of onion roses more than the initial temperature of storage. In case of pallet storage, air movement and temperature distribution of onion were so uniform that the danger of quality change was decreased.

  • PDF