• Title/Summary/Keyword: stone pagoda

Search Result 239, Processing Time 0.03 seconds

Evaluation of the Structural Stability of Rammed Earth Construction :The Case Restoration Project of the Stone Pagoda at Mireuksa Temple Site in Iksan

  • Min, Hwang-Sik;Choen, Deuk-Youm
    • Architectural research
    • /
    • v.20 no.3
    • /
    • pp.65-73
    • /
    • 2018
  • The restoration of foundations supporting the immense load of the stone pagoda at Mireuksa Temple Site prioritizes securing its structural stability. But so far, rammed earth construction is still not easy to determine the structural stability. This paper aims to emphasize that a scientific experimental study was conducted on a rammed earth construction, to identify its methodology and obtain objective data about structural stability of the foundation work. An experimental study fabricated specimens from the soil that had been removed during the excavation survey, determined the allowable bearing capacity through plate load tests, and compared the results with the predicted stress after reassembly of the stone pagoda to estimate the structural stability. Then, the repair method was selected based on the experimental study result. The evaluation method of the restoration of foundations consisted of an examination of the allowable bearing capacity and settlement. The allowable bearing of the reinforced foundation was more than twice the contact pressure under the stacked stones of the pagoda. The possibility of settlement of the rammed earth foundation soil layer during the pagoda assembly is expected to be very low because the settlement amount of the reformed soil layer is less than half of the settlement of the stabilized existing soil layer.

A study on the Chronological Recordings and construction method of Wooden Pagoda Sites of Baekjae (백제(百濟) 목탑지(木塔地) 편년(編年)과 축기부(軸基部) 축조기법(築造技法)에 관한 연구(硏究))

  • Cho, Weon-Chang
    • Journal of architectural history
    • /
    • v.17 no.4
    • /
    • pp.65-82
    • /
    • 2008
  • The wooden pagoda sites which have been confirmed in Baekjae's former territory so far have flattened surface of the earth or foundation pert made by digging up the earth. In particular, the latter is found more often in the pagoda sites of Baekjae, which is essential and absolutely necessary because of the characteristics of pagoda structure. The wooden pagoda sites with foundation part made by digging up the earth under the stylobate are found at Yongjeongli ruined temple site of Woongjin area, and at Neung-sa temple site, Wangheung-sa temple site, Geumgang-sa temple site, and Mireuk-sa temple site of Sabi period. They are also observed at Hwanglyong-sa nine-storied wooden pagoda of Shilla and at Biin five-storied stone pagoda of early Goryeo. They are important data improving that the construction technologies of Baekjae continued to be applied to build stone or wooden pagodas, transcending time and space. Recently, the site assumed as a wood pagoda site of Hanseong area was examined in Gyeongdang sect ion of Pungnap mud fortification. If this is proved to be a real wooden pagoda site, this digging-up construction technology of foundation part ann be concluded to be a traditional engineering technology of Baekjae which was frequently used from Hanseong period to Sabi period. On the other hand, this digging-up construction technology of foundation part has been found only at pagoda sites and main building sites of temple ruins, and it helps examine their symbolism.

  • PDF

Dynamic Behavior Characteristics of Three-Story Stone Pagoda at Cheollongsa Temple Site by Earthquake (지진에 의한 천룡사지 삼층석탑의 동적거동 특성)

  • Kim, Ho Soo;Kim, Dong Kwan;Jeon, Geon Woo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.305-314
    • /
    • 2021
  • The Gyeongju and Pohang earthquakes caused damages to many cultural properties; particularly, stone pagoda structures were significantly damaged among masonry cultural properties. To preserve these structures, it is necessary to understand their dynamic behavior characteristics under earthquakes. Analyses on such areas as deformation, frequency, maximum acceleration, permanent displacement, sliding, and rocking have to be performed. Although many analytical studies have already been conducted, dynamic behavior studies based on experiments are insufficient. Therefore, this study analyzed dynamic behavior characteristics by performing a shaking table experiment on a three-story stone pagoda structure at the Cheollongsa temple site damaged by the Gyeongju earthquake. As a result of the experiment, the displacements of stylobates did not occur significantly, but the tower body parts rotated. In particular, the rotation of the 1F main body stone was relatively larger than that of the other chief body stones because the 1F main body stone is relatively more slender than the other parts. In addition, the decorative top was identified as the component most vulnerable to sliding. This study found that the 1F main body stone is vulnerable to rocking, and the parts located on the upper part are more vulnerable to sliding.

A Study of collapsed conditions of the stone pagoda in Mireuk Temple Site (미륵사지석탑 붕괴상태 고찰)

  • Kim, Derk-Moon
    • Korean Journal of Heritage: History & Science
    • /
    • v.38
    • /
    • pp.305-327
    • /
    • 2005
  • Although the stone pagoda in Mireuk Temple site, Iksan, Cholla Province has been collapsed long time ago, few historical record has clearly explained the reason why the pagoda was collapsed and when. The west side of the pagoda have been destroyed from top to the sixth floor and the broken or damaged stone materials have been piled up in disorder. the lower part in the west was reinforced and enclosed by a stone embankment levelled to the height of the first storey of the pagoda. With no record informing the historical fact when it was made and by whom, it is only presumed that the embankment may have been built long time ago in order to prevent remains from further destruction. In the second chapter of the study, it has been tried to restore a reasonable historical background of the pagoda based on records or comments found in literatures such as traditional poetry and essays in chronological order. The collapsed slope in the west side, just above the embankment surrounding the lower part of the pagoda, was concreted in 1915 during the Japanese colonial period. Then in 1998, the Jeollabukdo has examined the structural safety of the pagoda. The Cultural Properties Committee has decided have the concrete layer removed and moreover to take apart the whole pagoda. It is also included that the disassembled stone materials should be given proper conservation treatments before being put into the place where they were in the reassembling process. The front view of the collapsed phase of the pagoda was revealed when the concrete-covered layer was removed. A hypothesis was built that there may be as many different appearances of collapsed pagoda depending on natural causes such as earthquake, sunken foundation, flood and typhoon. In chapter three, characteristic features were classified by examining various images of pagodas destroyed by different natural reasons mentioned in historical records. The chapter four dealt with comparison and analysis on the conditions shown in the stone pagoda in Mireuk Temple site and other examples studied in advance. The result of the study revealed that though having been made higher than the ground surface, the podium or the base of the pagoda actually has been eroded by rain and water. The erosion is supposed not only to have been proceeded for a long time without break but also to have caused the first storey body stone in the west inclined to outward. It has come to a conclusion that the pagoda may have been lead to collapse when the first storey body stone, supporting the whole weight from the upper storeys, became out of upright position and lost its balance. However, no such distinctive features of structural changes shown in pagodas collapsed by natural causes like earthquake, typhoon or sunken basement, have been found in the stone pagoda in Mireuk Temple site.

A study on the structure of the Three storied Stone pagoda in Gameunsa Temple site (감은사지 삼층석탑 구조)

  • Nam, si-jin
    • Korean Journal of Heritage: History & Science
    • /
    • v.38
    • /
    • pp.329-358
    • /
    • 2005
  • The Three storied Stone pagoda in Gameunsa Temple site, one of the early staged stone pagodas, has been known as a standard for Silla stone pagodas. A stone pagoda is not only a stone art work and but also a stone structure. Most studies and investigation of the stone pagoda has done mainly based on style and chronological research according to an art historical view. However, there is not an attempt to research the stone pagoda as a stone architecture. Most Korean experts at the stone pagoda has art history in their background. Engineers who can understand the structure of the stone pagoda are very limited. More architectural and engineering approach is need to research not only art historial understanding but also safety as a structure. We can find many technical know-how from our ancestors who made stone pagodas. 1. To reduce any deformation such as relaxation and sinking of BuJae which is caused by a heavy load, the BuJae (consist of a foundation stone and lower stereobates) should be enlarged. 2. A special construction method for connection between Myonsuk and Tangjoo was invented. This unique method is not used any longer after the Three storied Stone pagoda in Gameunsa Temple site. 3. The upper BuJae and the lower BuJae are missed each other by making a difference of Okgaesuk and Okgaebatchim in size. It is done for a distribution of perpendicular load and a prevention for relaxation of BuJae. 4. The center of gravity in the BuJae is located to the center of the stone pagoda by trimming the upper surface of the Okgaebatchim into a convex shape. The man who made stone pagodas had excellent knowledge on the engineering and techniques to understand the structure of the stone pagodas. We can confirm it as follows: the enlarged BuJae, dislocated connection between upper Bujae and lower BuJae, and moving the center of gravity close to the center of the stone pagoda.

3D Image Analysis for Digital Restoration and Structural Stability Evaluation of Stone Cultural Heritage: Five-storied Magoksa Temple Stone Pagoda (석조문화재 디지털복원 및 구조안정성 평가를 위한 3차원 영상분석: 마곡사오층석탑)

  • Jo, Young-Hoon;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.25 no.2
    • /
    • pp.115-130
    • /
    • 2009
  • This study was focused on digital restoration and structural stability evaluation applying 3D scanning system of five-storied Magoksa temple stone pagoda in Gongju. For these, the digital restoration of the pagoda was completed using laser scan data which is measured 16 directions and data processing program of 7 stages. As a result of digital restoration, the overall height and width of stone properties showed a little difference in directions and the width of roof stones appeared very high difference of each floor. The width of pagoda body become smaller to the fifth floor, but gradual decrease rate showed irregular characteristics. Also, as result of 3D image analysis for structural stability evaluation, the displacement occurred toward northwest in second body stone to upper final stone except for central axis of the first body stone which inclines toward southwest. Such 3D image analysis is required quantification of survey method and should be applied to various field such as quantitative damage maps in order to utilize a conservation of stone cultural heritages, continuously.

  • PDF

A study on the Cultural Elements of Stone to Village in Jeju (제주도 마을의 돌문화 요소에 관한 연구)

  • Kim, Hyung-Nam
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.11 no.1
    • /
    • pp.25-36
    • /
    • 2009
  • Coastal village and Inland village was village in jeju. This study was cultural elements of stone to village in jeju. Memorial Stone and Stone Monument Street, Shrine, An altar of sarificial site for village tutelary spirits, Bangsatap(pagoda), 25 Bongsu(25 beacon fire stations) and 38 Yeondae(38 signaling sites), Hwanhaejangseong Fortress, Grave wall and Horse pasture walls were included in elements of history and culture to village in jeju. An altar of sarificial rite for village tutelary spirits was generally on the a hill near a village, built of Stone wall. Bangsatap(pagoda) was the kind and the size of stone to a location, that expresses the form and the scale. the form of grave wall was the oval or the rectangle, the latter was frequent. Thatched houses in jeju and facilities in a house, Stone wall, Tongsi(pigsty), Paeng namu and A heights of stone, Spring water and Water collected in a depression, Stone Weir, Horse mill and Dodaebul(Old Lighthouse) were included in elements of life and culture to village in jeju. Stone wall has the multiplicity of the size and the building method in the use, the function and the region. The form of Stone weir was the rectangular figure or the curvilinear figure, the section of that was the right triangle or the rectangular form.

  • PDF

Interpretation of Construction Technique by Compositional Analysis of Soil Stratum with Basement at the Mireuksaji Stone Pagoda (미륵사지 석탑 축기부 토층의 조성분석을 통한 제작기법 해석)

  • Yi, Jeong-Eun;Lee, Chan-Hee;Lee, Dong-Sik
    • Economic and Environmental Geology
    • /
    • v.45 no.3
    • /
    • pp.237-253
    • /
    • 2012
  • The Mireuksaji stone pagoda is constructed Baekje Period in the 7th century which is located in Iksan, Korea. This stone pagoda designated by National Treasure No. 11 is the only remaining pagoda. This pagoda has lost the original form in part and the whole stonework wase dismantled. Work for the restoration is currently in progress. This study was divided into soil strata such as construct layer of the temple site, foundation layer of the pagoda basement, and construct layer of the stylobate by stratum to interpretation the skill of rammed earth and making techniques. The of physical, mineralogical and geochemical characteristics of soil samples were identified. Five pieces of soil in and around the Mireuksaji temple site was selected for the comparative study to interpretate the mutual homogeneity among soil stratum. As a result, artificial addition has not been identified in all soil samples using rammed earth. The soils used for the basement of the stone pagoda (construct layer of the temple site, foundation layer of the pagoda basement, construct layer of the stylobate) were confirmed to be the same origin as soil in and around Mireuksaji temple site. Thus these results indicate that the basement of the pagoda was constructed using soils in and around the Mireuksaji temple site without work as careful selection.