• Title/Summary/Keyword: stone bridge

Search Result 69, Processing Time 0.032 seconds

3D seismic assessment of historical stone arch bridges considering effects of normal-shear directions of stiffness parameters between discrete stone elements

  • Cavuslu, Murat
    • Structural Engineering and Mechanics
    • /
    • v.83 no.2
    • /
    • pp.207-227
    • /
    • 2022
  • In general, the interaction conditions between the discrete stones are not taken into account by structural engineers during the modeling and analyzing of historical stone bridges. However, many structural damages in the stone bridges occur due to ignoring the interaction conditions between discrete stones. In this study, it is aimed to examine the seismic behavior of a historical stone bridge by considering the interaction stiffness parameters between stone elements. For this purpose, Tokatli historical stone arch bridge was built in 1179 in Karabük-Turkey, is chosen for three-dimensional (3D) seismic analyses. Firstly, the 3D finite-difference model of the Tokatli stone bridge is created using the FLAC3D software. During the modeling processes, the Burger-Creep material model which was not used to examine the seismic behavior of historical stone bridges in the past is utilized. Furthermore, the free-field and quiet non-reflecting boundary conditions are defined to the lateral and bottom boundaries of the bridge. Thanks to these boundary conditions, earthquake waves do not reflect in the 3D model. After each stone element is modeled separately, stiffness elements are defined between the stone elements. Three situations of the stiffness elements are considered in the seismic analyses; a) for only normal direction b) for only shear direction c) for both normal and shear directions. The earthquake analyses of the bridge are performed for these three different situations of the bridge. The far-fault and near-fault conditions of 1989 Loma Prieta earthquake are taken into account during the earthquake analyses. According to the seismic analysis results, the directions of the stiffness parameters seriously changed the earthquake behavior of the Tokatli bridge. Moreover, the most critical stiffness parameter is determined for seismic analyses of historical stone arch bridges.

A Study on Load Carrying Capacity of Ancient Stone Arch Bridge (고대 석조아치교량의 내하력에 관한 연구)

  • 정형식;황영철
    • Geotechnical Engineering
    • /
    • v.8 no.4
    • /
    • pp.31-40
    • /
    • 1992
  • The arch of an ancient stone arch bridge consists of blocky stone blocks. For the purpose of estimation of load carrying capacity of a stone bridge, the mechanically frail discontinuities between stone blocks should be taken account of. Since the current way of analysis regards the stone arch as a continuous member, the characteristic of discontinuties is not considered. In this paper, an ancient stone arch bridge is analyzed and load carrying capacity is estimated by Finite Element Method with the discontinuties between blocks being modelled as interface elements. From the result of the study, it is shown that the load carrying capacity of a stone arch bridge is dependent of friction angle and shear stiffness between arch blocks rather than compressive strength of arch block itself and the stone arch bridge of granite is more influenced by shear stiffness than friction angle. The load carrying capacity of HONG bridge of HEUNG GUK temple analyzed in this paper is estimated as that of a third grade bridge.

  • PDF

Evaluating effects of various water levels on long-term creep and earthquake performance of masonry arch bridges using finite difference method

  • Cavuslu, Murat
    • Geomechanics and Engineering
    • /
    • v.31 no.1
    • /
    • pp.31-52
    • /
    • 2022
  • Investigating and evaluating the long-term creep behavior of historical buildings built on seismic zones is of great importance in terms of transferring these structures to future generations. Furthermore, assessing the earthquake behavior of historical structures such as masonry stone bridges is very important for the future and seismic safety of these structures. For this reason, in this study, earthquake analyses of a masonry stone bridge are carried out considering strong ground motions and various water levels. Tokatli masonry stone arch bridge that was built in the 10th century in Turkey-Karabük is selected for three-dimensional (3D) finite difference analyses and this bridge is modeled using FLAC3D software based on the three-dimensional finite difference method. Firstly, each stone element of the bridge is modeled separately and special stiffness parameters are defined between each stone element. Thanks to these parameters, the interaction conditions between each stone element are provided. Then, the Burger-Creep and Drucker-Prager material models are defined to arch material, rockfill material for evaluating the creep and seismic failure behaviors of the bridge. Besides, the boundaries of the 3D model of the bridge are modeled by considering the free-field and quiet boundary conditions, which were not considered in the past for the seismic behavior of masonry bridges. The bridge is analyzed for 6 different water levels and these water levels are 0 m, 30 m, 60 m, 70 m, 80 m, and 90 m, respectively. A total of 10 different seismic analyzes are performed and according to the seismic analysis results, it is concluded that historical stone bridges exhibit different seismic behaviors under different water levels. Moreover, it is openly seen that the water level is of great importance in terms of earthquake safety of historical stone bridges built in earthquake zones. For this reason, it is strongly recommended to consider the water levels while strengthening and analyzing the historical stone bridges.

Finite element modeling of the influence of FRP techniques on the seismic behavior of historical arch stone bridge

  • Mahdikhani, Mahdi;Naderi, Melika;Zekavati, Mehdi
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.99-112
    • /
    • 2016
  • Since the preservation of monuments is very important to human societies, different methods are required to preserve historic structures. In this paper, 3D model of arch stone bridge at Pont Saint Martin, Aosta, Italy, was simulated by 1660 integrated separate stones using ABAQUS$^{(R)}$ software to investigate the seismic susceptibility of the bridge. The main objective of this research was to study a method of preservation of the historical stone bridge against possible earthquakes using FRP techniques. The nonlinear behavior model of materials used theory of plasticity based on Drucker-Prager yield criterion. Then, contact behavior between the block and mortar was modeled. Also, Seismosignal software was used to collect data related to 1976 Friuli Earthquake Italy, which constitutes a real seismic loading. The results show that, retrofitting of the arch stone bridge using FRP techniques decreased displacement of stones of spandrel walls, which prevents the collapse of stones.

Dynamic Behavior Characteristics According to Arch Types of Arched Stone Bridge Subjected to Seismic Load (지진 하중을 받는 홍예교의 아치 형태에 따른 동적 거동 특성)

  • Kim, Ho-Soo;Lee, Seung-Hee;Jeon, Gun-Woo;Bang, Hyeok-Kyu
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.3
    • /
    • pp.45-55
    • /
    • 2018
  • The arched stone bridge has been continuously deteriorated and damaged by the weathering and corrosion over time, and also natural disaster such as earthquake has added the damage. However, masonry stone bridge has the behavior characteristics as discontinuum structure and is very vulnerable to lateral load such as earthquake. So, it is necessary to analyze the dynamic behavior characteristics according to various design variables of arched stone bridge under seismic loads. To this end, the arched stone bridge can be classified according to arch types, and then the discrete element method is applied for the structural modelling and analysis. In addition, seismic loads according to return periods are generated and the dynamic analysis considering the discontinuity characteristics is carried out. Finally, the dynamic behavior characteristics are evaluated through the structural safety estimation for slip condition.

Application of Fiber Stone for Bridge Pier Scour Protection (교각 세굴방지를 위한 섬유돌망태의 적용성)

  • Kim, Seong-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.337-340
    • /
    • 2011
  • In this study, qualitative and quantitative evaluations are performed using the hydraulic analysis of fiber stone for bridge pier scour protection. We can consider that the effective scour protection should be suggested from the side of hydraulic stability, structure stability, and permissible tractive force. The perfect verification, however, on the fiber stone for bridge pier scour protection is not sufficient because of short literatures and experiments on the field study. The continuous research, therefore, will be needed to establish reliable verification using literatures investigation and the various experiments on the fiber stone for bridge pier scour protection.

  • PDF

Analytical Study of a Historic Stone Arch Bridge After Retrofit to Evaluate Dynamic Characteristics and Structural Behavior (보수전과 후의 홍예교의 동적특성과 구조성능에 대한 해석연구)

  • Lee, Ga-Yoon;Lee, Sung-Min;Lee, Kihak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.177-184
    • /
    • 2020
  • This study evaluates safety assessment before and after repair of Seonamsa temple seungseon bridge, which refer to the representative Hongye bridge in Korea. In this approach natural frequency of the structure were considered in the modeling procedure. Trial & error method is applied to obtain the approximate natural frequency before and after retrofit construction. Stiffness of the actual structure was examined to account for the dynamic characteristics of Hongye bridge measured in the field and adjusting parameters in computer modeling. The safety and usability of the stone structure in terms of load bearing capacity and displacement were examined.

Seismic assessment and retrofitting measures of a historic stone masonry bridge

  • Rovithis, Emmanouil N.;Pitilakis, Kyriazis D.
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.645-667
    • /
    • 2016
  • The 750 m long "De Bosset" bridge in the Cephalonia Island of Western Greece, being the area with the highest seismicity in Europe, was constructed in 1830 by successive stone arches and stiff block-type piers. The bridge suffered extensive damages during past earthquakes, such as the strong M7.2 earthquake of 1953, followed by poorly-designed reconstruction schemes with reinforced concrete. In 2005, a multidisciplinary project for the seismic assessment and restoration of the "De Bosset" bridge was undertaken under the auspices of the Greek Ministry of Culture. The proposed retrofitting scheme combining soil improvement, structural strengthening and reconstruction of the deteriorated masonry sections was recently applied on site. Design of the rehabilitation measures and assessment of the pre- and post-interventions seismic response of the bridge were based on detailed in-situ and laboratory tests, providing foundation soil and structural material properties. In-situ inspection of the rehabilitated bridge following the strong M6.1 and M6.0 Cephalonia earthquakes of January 26th and February 3rd 2014, respectively, revealed no damages or visible defects. The efficiency of the bridge retrofitting is also proved by a preliminary performance analysis of the bridge under the recorded ground motion induced by the above earthquakes.

A Study on Provenance of the Stone Relics of WoljungGyo Bridge built in Silla Kingdom based on Geological Properties (신라시대 교량 월정교에 사용된 석재 유구의 지질공학적 특성에 근거한 산지 추정 연구)

  • Lee, Kwnag-wu;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.79-88
    • /
    • 2016
  • A derelict bridge called WoljungGyo is being restored in Gyeongju, the capital city of ancient Silla. WoljungGyo was originally built in 760AD, and later rebuilt in 1280AD during the Goryeo Kingdom. The bridge lasted in working condition for at least 520 years. The bridge was uncovered to the remains of both abutments and four piers, with only one or two steps remaining. The provenance of the WoljungGyo stone relics was investigated to decide the type of stone for the restoration works. Field survey were carried out in the whole area of Gyeongju-Si with petrological investigation for the stone relics. Results of the study present that Namsan granite was used in those days for building of the WoljungGyo. It is seems that the used stones were obtained from tor or core stone around the Tongil-jeon and Tap-gok area in the east side of Mt. Namsan.

Restoration Study of Woljeong-gyo (월정교의 복원적 고찰)

  • Nam, Si-Jin
    • Journal of architectural history
    • /
    • v.16 no.4
    • /
    • pp.77-93
    • /
    • 2007
  • According to documentary records Woljeong-gyo(stone bridge) is built in 760(Silla the 35th King Gyeongdeok 19) and used as original function until 1280(Goryeo the 25th King Chungryeol 6) as Chunyang-gyo. But in those days "Donggyeongjapgi" was published in 1669(Joseon Hyeonjong 10) we assume that it was lost its original function. There are four pier in the type of a ship with the same distance in the middle of river. We can see it is the site of bridge as parts of stonework of bridge are remained. In 1975 the abutments and piers are surveyed and in 1984 stone investigation twice and excavation three times which were to plan restoration were done. Now the restoration of abutments both ends are worked. For restoration of Woljeong-gyo studied documentary records and excavation recoeds were collected and examined. It helped to see the bridge in southern China twice to restore the bridge. Unearthed articles such as yeonham(a kind of member to support roof tiles) and giwa(roof tile) gave decisive clues to assume upper structure of the bridge and from Chinese bridges are helped to type of the bridge. It is certain Woljeong-gyo was ranggyo which means that upper structure was made with wooden members and the stone piers shaped of a ship below and near the abutments both ends another buildings were. Youngjocheok(the architectural measure) of this bridge is similar to gokcheok(the metal measure, 301.84mm) used now that the length of piers is 46choek(尺), the width of that is 9choek(尺), the length between two piers is 42choek(尺), the length between abutment and pier is 38choek(尺). Also we can see that entirely the length of the bridge is 210choek(尺), width is 40choek(尺).

  • PDF