• Title/Summary/Keyword: stomatal closing H2O2

Search Result 1, Processing Time 0.015 seconds

The Mechanism of Stomatal Closing by $H_2O_2$ in Epidermal Strips of Commelina communis L. (닭의장풀의 분리표피에서 $H_2O_2$에 의한 기공 닫힘기작)

  • 이준상;전방욱
    • Journal of Environmental Science International
    • /
    • v.6 no.2
    • /
    • pp.125-131
    • /
    • 1997
  • The mechanism of stomatal closing in response to $O_2$ was indirectly investigated by using $H_2O_2$ which is the intermediate product of $O_2$ metabolites. Stomata in epidermal strips close in response to $H_2O_2$. The effect of $H_2O_2$ on stomatal closing was dependent on the concentration of $H_2O_2$. 10 ppm $H_2O_2$ showed a clear effect on stomatal closing and 1000 ppm $H_2O_2$ induced complete stomatal closing after the treatment of 3 hours. Stomatal closing by $H_2O_2$ in intact leaf was also observed by measuring the diffusion resistance with porometer. It was found that the stomatal closing by $H_2O_2$ was not mediated by $Ca^{2+}$, and that was a different result observed in stomatal closing by water stress. Reversely, $Ca^{2+}$ showed a great inhibition on stomatal closing. The leakage of K+ in epidermal strips was doubled in response to $H_2O_2$ when it was campared to the control. 10 ppm $H_2O_2$ decreased photosynthetic activity. Fv/Fm representing the activity of Photosystem II was reduced about 4 % in 10 ppm $H_2O_2$ and 8 % in 100 ppm $H_2O_2$ In the treatment of 1.5 hour. However, stomatal closing by 10 ppm $H_2O_2$ was reduced about 56 %. According1y, it can be suggested that stomatal closing by $H_2O_2$ is related with the decrease of photosynthetic activity, but it was chiefly induced by the change of the membrane permeability. Key words Commelina communis, stomatal closing, $H_2O_2$, $Ca^{2+}$, photosynthesis.

  • PDF